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13     ABSTRACT 
The "previous parametric-instabil^y explanation of the jump in the Stokes intens'ty Is as a 

function of laser intensity II in stimulated Raman scattering experiments is valid for many 
solids, liquids, and gases (with high optical dispersion dn/dX and high Raman frequency a;f), 
while a few materials (low dn/dX and u!f) should show an enhanced gain, ls ~ exp IL , which is 
greater than the usual stimulated-Raman gain but not as great as the jump result. Previously 
anomalous experimental results, which show both types of behavior, are explained. For high dis' 
persion the steady state is not readied until a time much greater than the Raman phonon relax- 
ation time. A phonon parametric instability studied previously in another context can reduce the 
Stokes intensity. Experiments to detect the phonon instability are suggested. In the earlier 
golden-rule analyses (perturbation theory treatment of occupation numbers) the enhancement 
was lost by neglecting the increase of the vibrational amplitudes above their thermal equilibri- 
um values.  Even though the probability of an individual ion or molecule being excited is small, 
the occupation number of the phonon in the Raman process is large. In the previous mode- 
amplitude analyses, the enhancement was lost In the method of linearizing the nonlinear differ- 
ential equations. By solving these same mode-amplitude equations without using the previous 
linearization scheme, the enhancement is obtained and the equivalence of the mode-amplitude 
and golden-rule 3oson-occupation-number analyses is demonstrated explicitly. The loss of 
phase information in using the occupation numbers is unimportant. Analysi« indicates that 
Raman active crystals fail at intensities If which are greater than the value IR of 1L at the jump 
by an amount IT that is generally of the order of or less ^han IR. A typical value of IR at the 
ruby frequency is a few GW/cm2, which is less than other intrinsic-mechanism thresholds. The 
temperature rise from the | honons generated near the sample surface is sufficient to cause ma- 
terial failure when 1 > If. Expressions are derived for the rate at which radiation is scattered 
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ABSTRACT (Continued) 

and absorbed becaube of surface roughness on a semi- 
infinire material in the presence of a dielectric over- 
layf r, which can greatly enhance the radiation to surface 
plasmon coupling. A formalism developed previously is 
utilized. A series of numerical calculations which ex- 
plore the roughness-induced scattering and absorption of 
uv radiation for aluminum overcoated by aluminum oxide 
is presented.   The reflectivity dip produced by roughness 
induced coupling to the surface plasmon shifts toward the 
visible as the fhlckness of the oxide layer increases. T^e 
size of the dip is controlled strongly by the degree of 
correlation between the roughness on the vacuum oxide 
interface, and that on the oxide-substrate surface.   The 
temperature rises T of laser-irradiated metals have 
drastically different magnitudes and dependences on ma- 
terial parameters such as thermal conductivity K and 
heat capacity C, on the sample thickness i and lateral 
dimension L, and on the operating conditions such as the 
laser-beam diameter D and pulse duration t. The behav- 
ior depends on the relative magnitudes of D, I, L, and the 
thermal diffusion distance d. The highest of the recently 
measured copper damage thresholds of 12S to 750 J/cm 
for 0.6jisec pulses at 10. 6 ^m are likely to be quite near 
the intrinsic limit set by the simple process of melting 
from the intrinsic absorption. The intensity at which the 
cavity mirrors of recently developed xenon uv lasers fail 
is explained. The theoretical value of T for metals ir- 
radiated for 20 seconds with I0.6||ni radiation is ~ 100 
too small to explain recent experimental damage results, 
the discrepancy probably being related to plasma ignition 
at the sample surface. The steady-state value of T for 
cooled metals is not reduced substantially by increasing 
the cooling efficiency past a certain point.  For t < T , 
where the characteristic time T depends on both the 
cooling and i , cooling the metal is not effective in pre- 
venting the temperature rise. 
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PREFACE 

This Fourth Technical Report describes the work performed on Contract 

Number DAHC15-73-C-OI27 on  llieoretical Studies of High-Power Ultraviolet 

and Infrared Window Materials during the period from June 30,  lt)74 through 

December 6, iiv74.   As in the past, previously reported results are not re- 

peated in the present report.   The work on the current contract is a continua- 

tion of that of the previous Contract Number OMC15-72-C-I0W. 

Hie following investigators contributed to this report: 

Dr.  C. J.  IXithler, principal research scientist 

Dr. A. A.  Maradudin, consultant. University of California, Irvine, Cilifornia 

Dr. D. L.  Mills, consultant. University of California, livine, California 

Dr.  U J. Sham, consultant. University of California, San Diego, California 

Dr. M. Sparks, principal investigator . 

In preparation for presentations at the Advanced Research Project Agency's 

Materials Research Cou.icil Studies of High Energy Laeer Mirror Materials and 

of Krosion of Infrared Windows at U. Jolla. California in July Il)74, the following 

interesting results were obtained: (a) In some cases, the infrared laser damage 

to mirrors can be explained by the simple process of ordinary intrinsic absorp- 

tion, with the temperature dependence of thr intrinsic absorptance A determined 

from the relation A ~ p, where p is the v-lectrical resistivity,   llius, it is not 

necessary to invoke nonlinear processes as thought when the meeting was ar- 

ranged.   In other cases, the laser ignition of plasmas at the surface obscures 

the ordinary heating effect,   (b) Calculations of the temperature rise in 

vii 



lastT-irradiutttl metals and transparent materials yield Important results that 

should he useful in miiror, metal target, and window-materials tests, (c) A model 

of surface ahsorption with ;i hulk and surface contnhution to the electron relaxation 

frequency was proposed to explain the anomalous temperature dependence of A ob- 

served at China l-«ke.   Subsequenl invesligalionN of the- model turned up difficulties 

in the explanation, but indicated that further studies would he promising. The re- 

sults from the surface model mav also he related to »he problem of laser ignition 

of plasmas at solid surfaces. 

Ihe miiror-da mage results and the results for the temperature rise in laser- 

irradiated metals are included in Sec. I   of the present report.    1 lie case of trans- 

parent material will IK- included in a subsequent report, as will a hrief report of 

the surtace-absorption model.   At the suggestion of Or. M. I lass, our previous 

analysis of molecular-ion ahsorpiion was applied exphcitlv to the case of potas- 

sium bromide (Sec. ID.    Ihe emphasis in the remainder of the program was on 

ultraviolet materials. 

\ in 
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Sec. A 

A. INTOOOUCTION AM) SUMMARY 

Work on the enhancement in the stimulated Kaman scattering process, which 

was discussed hriefly in the previous technical report, has heen completed.    ITie 

final results are contained in the present report.   In addition to a more complete 

description of the former results, three new results are reported: (1) It is shown 

in Sec. I that materials with low optical dispersion and small Kaman frequencies 

u:   can exhibit an Intermediate Stokes cain that is lower than the strong enhanced 
f 

gain that gives rise to a jump in Stokes iniensitv  Is as a function of laser intensity 

I   , but greater than the previous linear Kaman gain.  For this intermediate-gain 

case, Is - exp I? .   Kxperimental results, which show both types of behavior, are 

now explained,  lor high dispersion, the steady state is not reached until a time 

much greater than the Kaman phonon relaxation time. A phonon parametric insta- 

bility stuttied before in another context can reduce the Stokes intensity. Experi- 

ments to detect the phonon instability and measure the magnitude and temperature 

dependence of "half-frequency" phonons (,) (with frequencies oc^ • u-'.g       Uif ) 

are suggested. 

(2)   Hie reasons for the absence of the enhancement in other treatments of 

Hainan amplification were discovered (see Sec. C).   In the earlier golden-rule 

analyses (perturbation theory treatment of occupation numbers), the enhancement 

was lost bv neglecting the increase of the vibrational amplitudes -ibove their ther- 

mal equilibrium values, l.ven though the probability of ai. individual ion or mole- 

cule being excited is small, the occupation number of the phonon in the Kaman 

process is large.   In the previous mode-amplitiuie analyses, the enhancement was 

J——M———W i i——^■■i .___^^^MM^^^___      . ...     



Sec. A 

lost in the method of linearizing the nonlinear differential equations.   By solving 

these same mode-amplitude equations without using the earlier linearization 

schone, the enhancement is obtained and the equivalence of the mode-amplitude 

and golden-rule Boson-occupation-number analyses is demonstrated explicitly. 

'Ilie loss of phase information in usmg the occupation numbers is unimportant. 

(3) In Sec. D an analysis of laser damage to materials by this enhanced 

stimulated Kaman scattering mechanism shows that the damage threshold for 

Raman active crystals may be lower than the threshold for other mechanisms 

such as electron avalanche and self focusing. 

As mentioned in the Preface, it was discovered in preparing for presenta- 

tions at the Advanced Research Projects Agency Materials Research Council 

Studies at T^ijolla, California in July, 1974 that in some cases the infrared laser 

damage to mirrors can be explained by the simple process of ordinary intrinsic 

abf. jrption.  One group was already aware of this result, but apparently it was 

not generally realized that it was not necessary to invoke nonlinear effects to 

explain the damage threshold.   The increase in absorptance with increasing tem- 

perature and consideration of the 0.2)isec peak in the nominal l().6jisec pulse 

are important in obtaining agreement between the theory and the Hughes experi- 

mental results. 

At the conference concern was expressed that the experimental results of 

Saito, Charlton, and I^oomis were different from those of the Hughes Malibu group, 

particularly with respect to differences between copper and molybdenum. We sug- 

gested that the differences could be related to the fact that for the O.bfisec pulses 

in the Hughes experiments the thermal diffusion distance d was much less than 
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Sec. A 

the sample thickness £ , while d » £ was satisfied for the 20 sec y.ulses in the 

experiments of Saito, Charlton, and Loomis.   The differences in the volumes that 

v;ere heated means that the temperatures in the two cases will have different de- 

pendences on the thermal conductivity K and heat capacity C.  It was found that 

the simple procedure of using an effective heated volume to find the temperatu-e 

rise requires extreme care in general. Fortunately, an exact simple solution was 

obtained for the maximum temperature rise in l realistic model that includes the 

most difficult case of d » £.  These results were combined with previously un- 

published results to form a relatively complete treatment of laser heating of 

metals in Sec. F. 

The theoretical results appear to explain the Hughes experimental results. 

However, they clearly show that the theoretical value of the temperature in the 

expe: iments of Saito and coworkers is two orders of magnitude too small to ex- 

plain the experimental damage results.   It appears that ignition of a plasma at the 

metal surface is responsible for the difference.  Until this plasma ignition result 

is understood, the differences between results for copper and molybdenum cannot 

be considered as significant. In particular, the different dependence of T on K 

and C for the two cases of d >> i and d « I cannot be used to explain the 

present differences. 

The theoretical intensity at which the cavity mirrors of recently developed 

xenon uv lasers fail is in good agreement with the experimental values. Further 

results of the theory are as follows: The steady-state value of T for metals 

cooled with a surface-heat-transfer coefficient h is not reduced substantially 

by Increasing the cooling efficiency past a certain point (h > h£       K /£). 

■■ ^MMM^M 
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Sec. A 

For t < T, where the characteristic time T depends on both A and h, cooling the 

metal is not effective in preventing the temperature rise. Ilie temperature rises T 

of laser-irradiated metals have drastically different magnitudes and dependences 

on material parameters such as thermal conductivity K and heat capacity C, on 

the sample thickness i and lateral dimension L, and on the operating conditions 

such as the laser-beam diameter D and pulse duration t. The behavior depends 

on the relative magnitudes of D, £, L, and the thermal diffusion distance d. 

The long-standing problem of the anomalously large absorption by some oy>- 

dizcd aluminum samples (the absorption by Al203 iS n0t sufficiently stronfi to 

explain the great absorption) motivated the study of the effect of a dielectric over- 

layer on a rough aluminum sample. See Sec. B.   In some samples the presence of 

a layer of Al^O« on a smooth aluminum surface may be sufficient to cause the 

measured absorption, as recently realized by U. ährenreich (private communica- 

tion) and by Maradudin and Mills in the previous technical report, in other samples, 

the absorption is too great to be explained by this result.   A preliminary study in 

which the results of Sec. E are applied directly to this problem suggests that a 

rough A190„ layer should give rise to the greater observed absorption, while a 

smooth A190„ layer should give rise to the lesser observed absorption. This will 

be discussed in detail in a future report. 

In the previous technical report an estimate of the strength of the two-photon 

absorption process in transparent materials indicated that this process may have 

the lowest threshold of the known failure mechanisms.   In view of this importance 

of the two-photon absorption process and the fact that the accuracy of the theoreti- 

cal estimate may IJO as low as two orders of magnitude, an improved estimate is 
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important.   Unfortunately, even the one-photon absorption process is not well 

understood.   In fact, even the explanation of absorption edges and the values of 

the energy gaps in fro simple alkali halides are curre.itly controversial. It ap- 

pears that a relatively simple tight binding calculation may resolve at least some 

of the difficulties.   The final analysis of the two-photon absorption has therefore 

been delayed for a short time in order to consider some of the fundamental prob- 

lems whose answers are needed before a completely satisfactory trer ;ment of the 

two-photon problem can be undertaken.   The approach to the one-photon absorption 

problem is sufficiently simple that it appears that it can be used in conjunction 

with techniques from our previous treatment of magnetism and phonon prcblcms 

to obtain information on states in the gap of wide bandgap materials. 

Two papers presented at the Advanced Research Projects Agency Fourth 

Laser Window Conference at Tucson, Arizona in November, 1974 are included 

in Sees. G and H. Sec. H is an extension of the previous treatment of mulecular- 

ion-impurity infrared absorption (second technical report).  It is emphasized that 

the absorption frequencies result from the internal modes ol the molecular-ion 

impurity which are shifted and broadened only slightly bv the particular host 

crystal.   Consequently the previous analysis, which emphasized KC1, is directly 

applicable to KBr and is approximately valid for other ionic crystals containing 

halide ions.   The absorption frequencies of several molecular-ion impurities are 

given and it is suggested that the overlapping absorption lines from several poly- 

atomic ions, all ov which contain oxygen, could account for the broad previously 

unidentified absorption peak near 9.5 jxm. 

—mm 
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Sec. I) 

B. STIMULATED RAMAN SCATTERING: ENHANCED STOKES CAIN AND 
EFFECTS OF ANTI-STOKES AND PARAMETRIC PIIONON PROCESSES 

M. Sparks 

Xonics, Incorporated, Van Nuys, California 91406 

It is shown that the previous parametric-instability explanation of 

the jump in the Stokes intensity !<, as a function of laser intensity I.   in 

stimulated Raman scattering experiments is valid for many solids, liquids, 

and gases (with high optical dispersion dn/dX and high Hainan frequency 

ajf), while a few materials (low dn/dX and a:f) should show an enhanced 

gain, L ~  expl,  , which is greater than the usual stimulated-Raman gain 

but not as great as the jump result.    Hie previously anomalous experimental 

results of Crun, McQuillan, and Stoicheff and of others, which show the jump 

in I~, and of l lagenlocker, Minck, and Rado, which show both types of be- 

havior, are explained.   The instability is expected to be important in laser 

damage of Raman active crystals and possibly in determining the limiting 

diameter of self-focused beams.  The transient solution for the case of high 

dispersion indicates that the steady state is not reached until a time much 

greater than the Raman plionon relaxation time.   It is also shown that a 

phonon parametric instability studied previously in another context can 

reduce the Stokes intensity.   Hxperiments to detect the plionon instability 

and measure the magnitude and temperature dependence of "half-frequency" 

phonons Q (with frequencies u:() •   u;^)       u:f) are suggested. 
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Sec. B i 

I. INTRODUCTION 

Stimulated Raman scattering was first observed1 and analyzed   in 1962. It was 

recently realized3 that a parametric instability in the Raman Stokes process causes 

a Stokes-intensity gain enhancement that has significant consequences including a 

nearly discontinuous increase, or "jump." in the Stokes intensity ls as a function 

of the laser intensity 1^ in the absence of self focusing and feedback. Such jumps 

had been observed, but were not understood.   The instability is expected to be im- 

portant in laser damage in solids 'hat have first-order Raman-active modes, the 

damage thresholds being well below the l()10W/cm2 value typical for alkali halides. 

which are first-order Raman inactive.   It is possible that the limiting diameters of 

self-focused beams may be determined by the stimulated Raman scattering process 

in some materials. 

Another recent study4 considered the effects of a parametric instabilitv ol 

phonons on nonlinear infrared absorption.   In the Raman Stokes process, a laser 

photon L  is annihilated and a Stokes photon S and a fundamental (Reststrahl) 

phonon f are created.   Fhese created phonons f can split into two phonons Q and 

-Q, and this three-phonon process is subject to the same parametric instability 

discussed in Ref. 4. In terms of the diagram in Fig.lU. parametric effects are in- 

volved at both vertices R and p, corresponding to the stimula^ed-Raman-scattering 

enhancement and phonon instabilities, respectively. 

The physical interpretation of these instabilities is rather simple.   For the 

Raman process, the balance of the energy put into the f phonons In the Raman 

process against that removed from the f phonons by relaxation is a key to the 

explanation.   The power out by relaxation (by interaction with impurities or other 

phonons, for example) increases linearly with the number of phonons nf. which is 
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just the condition  nat a relaxation time exists.   On the other hand, the power into 

the f phonona increases nonlinearly with increasing n, since the Kaman process is 

a three-Boson process (wlüch results in products of Boson occupation numbers in 

the expression for the power).   Thus, at a critical value of the input power, which 

is proportional to the laser intensity, the amplitude nf becomes very large.   rlhe 

value of 1^. is also large since a Raman event creates one f phonon and one S 

photon.  The critical value of 1.   is denoted IR . 

Any three-Boson splitting process is potentially unstable parametrically. There 

are analogies between the tvo instabilities considered here and previous instabil!- 

4a ties in ferromagnetic resonance     (premature saturation of the main resonance, 

subsidiary absorption below the main resonance, and parallel pumping absorption), 

4b 4c plasma physics,      and electronic devices. 

In the present paper, two distinct effects are considered. First, it is shown 

that the jump in I- is expected to exist ,n many materials (with high optical dis- 

persion).   By contrast, in a few materials with low optical dispersion, such as 

hydrogen gas for the rotational Raman mode, the enhanced gain is greater than 
2 

the usual gain    of stimulated Raman scattering, but is not sufficiently great to 

give a jump in !<, as a function of I. .  Second, it is shown that the phonon para- 

metric instability hat two important effects on stimulated Kaman scattering. 

3 
Ilie first effect concerns the previous observation    that  1.   and I-  were dis- 

continuous at the input surface of the sample when I.   >  'o •   h was pointed out 

that this zeroth-order result was related to an infinite (but integrable) value of 

the fundamental-phonon occupation number n,  at the surface, and that the Infinity 

and resulting discontinuities would be removed by higher-order effects such as 
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nonlinearities in the Raman oscillators.  The parametric instability in the 

f phonons is one such effect that removes the discontinuities.   Two central re- 
4 

suits of the phonon-parametric instability study    are that the fundamental-mode 

occupation number nf  is limited to values below a critical value n    and that 

there is an effective relaxation frequency IV of the fundamental phonoi. that is 

greater than the usual linear value rf as a result of an increase in the occupa- 

tion numbers nn of the phonon modes into which f decays.  Consequently, the 

discontinuity obviously is removed since nf is limited to a value below the thres- 

hold value n   , thus removing the infinity in nf.   For It   ^ ID* the spatial build up 

of Ic depends on the phonon instability.   In gases, the nonlinearities in the oscilla- 

tions of the individual molecules can limit the amplitudes of oscillation, in analogy 

with the phonon-instability limit in solids. 

The second effect of the phonon-parametric instability is that in the rather 

rare case in which the phonon instability occurs at I,   < IR t the Stokes intensity 

is reduced.   Since the enhanced Stokes gain is a result of an increase in the occu- 

pation numbers nf  of the fundamental phonon, and both the enhanced and ordinary 

gain depend on rf, the phonon instability can reduce both the ordinary and en- 

hanced stimulated Raman scattering by reducing the value of nf and increasing 

the value of rf. It is suggested in Sec. VII that experiments in which this reduc- 

tion of !„ is observed should afford a method of measuring the magnitude and 

temperature dependence of the lifetimes of the phonons well away from symmetry 

points in the Btillouin zone. 

Next, consider the consequences of the anti-Stokes process, in which a laser 

photon and a fundamental phonon are annihilated and an anti-Stokes photon is cre- 

ated.   The jump in I~ is related to the large number of f phonons created in the 
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Raman process, as discussed ahove.  'ITie anti-Siokes process in which these 

create I phonons are annihilated can conserve wave vector and energy (within the 

linewidth for the process) for forward scattering if the optical dispersion dn/dX 

is low, but not if it is high.   Thus, for low optical dispersion, the anti-Stokes 

process reduces the value of nf, thereby reducing the Stokes gain to a value 

2 
(~expl|    roughly) intermediate between the fully enhanced value and the expo- 

nential value (~expl. ) of the original theories. 

For high dispersion, the forward-scattering anti-Stokes process does not 

conserve energy and wave vector; thus, the previous enhanced-gain result, which 

was derived by neglecting the anti-Stokes process, is valid.   I'oi scattering at an 

angle 6      »   from the forward direction, the anti-Stokes process can conserve 

energy and wave vector.   'ITius, as 6 increases, 1.   decreases and I.   increases 

to a peak value at 9      . , provided the aspect ratio (length to diameter ) of the 

laser beam is sufficiently small to allow the Stokes and anti-Stokes beams to 

remain in coincidence with the laser beam, roughly speaking. 

Hie transient solution of Sec, IV for the high-dispersion case shows that the 

steady state is not attained until a time much greater than the Raman phonon re- 

laxation time.    Only the steady s^ate is considered in other sections. 

In the analysis, the equations of motion of the occupation numbe. s, rather 

than the mode amplitudes, are considered.  This greatly simplifies the analysis. 

A priori it is not expected that the resulting loss of phase information ii> importan. 

since the parametric process amplifies the thermally excited modes that have the 

4-6 
proper phase.   This is indeed the case in previous calculations. die problem 

10 
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7 
of phases has been settled by Sparks and Wilson,     by rederiving the 

enhanced stimulated Raman scattering results with phase information included, 

starting from Maxwell's equations and the elastic-wave equation with coupling 

added in the standard way. 

They have also identified the points at which the enhancement was lost in 

previous analyses, which used either the equations of motion of the Boson occupa- 

tion numbers obtained from perturbation theory (the golden rule) or the equations 

of morion of the mode amplitudes (creation and annihilation operators or Fourier 

components and their complex conjugates of the electric field, for example). In the 

previous golden-rule type analyses, the enhancement was lost by neglecting the 

deviation of the vibrational amplitude from the thermal equilibrium value. Although 

n, becomes large as mentioned above, the probability of an individual ion or mole- 

cule being excited is small, roughly speaking.   Specifically, nf/N « 1 is usually 

satisfied, where N is the number of unit cells or molecules.   It was this fact that 

the individual ions or molecules are not highly excited that led to the assumption 

that the thermal equilibrium values were maintained in the previous analyses. 

There are similar results for other three-Boson processes.   For example, in 

ferromagnetism, magnon occupation numbers arc large at the threshold, while the 

probability of an individual electron spin being excited to the spin-down state is small. 

In the previous mode-amplitude analyses, reducing the nonlinear equations to 

parametric linear equations (that is, linear eqintions witli time-dependent coeffi- 

cients) by assuming that the laser mode amplitude aj  = bj exp(-iu^t), where 

b,   is a constant, resulted in the loss of the enhancement.   The same linearization 

scheme applied to well known magnon parametric instabilities results in the loss of 

II 
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the steady-state solution, even though clamping is included and a sttady-state 

solution is expected on the basis of simple physical arguments.  By solving the 

same equations without using this linearization scheme, the difficulties were 

removed and the equivalence of the mode-amplitude and golder.-rule results was 

demenst-ated explicitly for the stirnulated-Raman-scattering and magnon problems. 

Finally, the standard practice of considering only three waves is followed here 

since the analysis is greatly simplified.   It can be shown that including all Stokes 

waves that are amplified does not change the central results. 

12 
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II. Mir.H-OPTICAL-niSPKRSlON CASI. OF COUPLED STOKES 
PHOTOhB AM) lUMUMKNTAL PIIONONS 

llic anti-Stokes process is neglected in the present section.   It is shown in 

Sec. V that this is a good approximation in the common case of high-optical dis- 

persion. 

Hie enhanced stimulated Kaman effect can be obtained simply from the equa- 

tions of motion of the Stokes-photon and f-phonon occupation numbers ns and n, 

as follows: Using the standard perturbation-theory result 2TrTi"   |(f |K| iN |   t(Z:) 

for the transition rate between initial state  |iN and final state  |0 to calculate the 

rate of change of the occupation number n, of the f phonons resulting from the 

3 H Stokes process and relaxation gives' * 

~     1 -1 -    ) dnf/dt  -  rf        [(■_-fB^-fl)B.  -nsnf]n„    - nf + nf (2.1) 

where rf is the relaxation frequency of the I phonons (enhanced by the phonon in- 

4 - 
stability),    n. is the thermal-equilibrium value of nf, and the threshold value n.. 

of n.   is 

nR/V - rf/cR CR   -   2tr|vR|
2 Vö(a's) 

where V is the volume of the sample, VR is the Raman matrix element divided bv 

Ti, and ö(u."s). with cOg      ^ ^   - CO, - tcVi is the line-shape factor obtained by re- 

placing the delta function b\ a lx)rcntzian of width rf •   On resonance, thai is at 

oc,.      0, the value of  6 is 6(0:,.)      1/irr,.    Hie wave-vector Kronecker delta in 

VR was eliminate.I by the summation over Stokes modes, and S in (2. 1) is the 

single wave-vector-conserving Stokes mode. 

13 
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~2 
On resonance,  nR  ~ rf  ;is seen from the equations below (2. 1); thus 

R 1( nop y - rf/rf   . (2.2) 

where ■,        is the (linear) value of nR with rf      rf. and y is the enhancement 

factor for the relaxation oi Lhe fundamental mode.      Hie term  -Tf nv.n /n.{ in (2.1) 

is important in the saturation region (where a substantial fraction of the laser In- 

3 
tensity is converted to Stokes irtensityV     lliis depletion of the laser beam is neg- 

lected in the present paper.   In this case, the steady-state soluMon to (2. 1) is 

nf 
>2nf+ ,LR(,V1) 

7^ (2.3) 
UK 

where 1 l.K lL/lR   a   "L^Knop  Wllh lL ^ TlwLcLnL/V' lK    r,^l.cl.nK nop7 V' 

and Cj   is the velocity of the laser beam,   Hq. (2.3) reduces to the previous result" 

in the limit of y   » 1, 

' or 'iJ^ ' ()' ^•^ Kivcs nf      nf. of course,    ilie increase in the value of nf 

ed by the reduction in the value of the 

is the key to the enhancement in the gain. 

caused by the reduction in the value of the denominator in (2.3) as 1. .,  increases 

I he gain-enhancement result and its relation to the previous results showing 

no enhancement can be seen explicitly as follows: The equation ol motion for the 

number of Stdkes photons, wliicli is obtained by the same method used in deriving 

(2.1). is3 

dns/dt       /Sj^ (ns + nf ' 1)-dns/ax (2.4) 

where «3^       \.I,J<>'    with ßc =   IJ/Cg 

14 
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For the formal case of nf ■   nf and y ■ 1, the steady-state solution to 

(2.4) is 

ns  -   (nf + l)[exp(ßcILRx)- l] + ns(0)cxp ß^^x    . (2.5) 

For ^  ILRX  «  1 and ns(0) ■ 0, ns = (nf + l)ßcILRx, which is the 

spontaneous-emission result.   The last term on the right-hand side of (2.5) is 

the (-icvious expression for stimulated Raman scattering,' that is, the exponential- 

gain result witliout enhancement.   With ns(()) » 0 and exp3cIlRx »  1, (2.5) 
2 

gives "amplification of noise" with exponential gain.   In previous treatmentt-,   the 

first term in (2.5) was missing,    llius, special arguments were required to deter- 

mine the va'-e ns(0) when there was no incident Stokes wave. 

Substituting (2.3), rather than the nf  ■   nf as above, into (2.4) and solving 

the resulting equation for the case of y   =  1 gives 

ns  ^   (Kf+l)[exP(ßgncwx)-ll + ns(0)expßgnewx     . (2^6) 

where S = ( Fr/Cc ) I, u ( 1 - I, „ )' , which is a central result of Kef. 3. 
'g new i     a     • 'i\ i--'^ 

These two results (2. 5) and (2. 6) show explicitly that the enhancement in the gain 

yeen in (2.6) results from the increase in nf above its thermal equilibrium value, 

as already mentioned. 

Notice that although nf is large, the probability of an individual ion or molecule 

being excited is small, roughly speaking. Specifically, n /N « 1 is usually satis- 

fied, where N is the number of unit cells or molecules. The fact that the individual 

ions or molecules are not highly excited led to the assumption that the thermal equi- 

librium values were maintained in some previous analyses. Hius the enhancement 

was not obtained.  There are similar results for other three-Boson processes. 

is 
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For example, in ferromagnetism, magnon occupation numbers are large at the 

threshold, while the probability of an individual electron spin being excited to the 

spin-down state is small, as already mentioned. 

The effect of enhancement of the phonon relaxation frequency, that is, the 
2 

effect of y   > 1, is considered in Sec. VI.  One effect of the enhancement should 

be mentioned here.  In (2.6), 0 cannot become negative as a result of 1 - Ii n 
2 

becoming negative.   The reason is that (2.6) is valid only for the case of y    =  1, 

which restricts Ij n  to values less than unity.   For the case of 1. R > 1, the value 

of Ig is determined by solving (2.1) and (2.4), with the nonlinear term -rrn^r^/nn 
2 

added, and using the values of y    from Sec. VI. 

16 
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UI.  LOW-OPTICAL-DISPERSION CASE OF 
COUPLING OF S, A, AND f MODES 

In this section the effect of including the anti-Stokes contribution (dnf/dt )A 

to the equation of motion of nf is considered.   In Sec. V it is shown that this A-f 

coupüng must be included when the optical dispersion is low.  Using the same 

perturbation-theory method used in deriving (2.1) gives 

(dnf/dt)A  -   2tr|VRl26(wA)[(nL+nf+l)nA-nInf]    , (3.1) 

where n.  is the n' jupation number of the anti-Stokes mode and üJA- ü:L+ wf - ü;A 

This contribution (3.1) must be added to the right-hand side of (2.1), which gives 

V dn /dt  - 2|VRl
2ff"1nSA. where 

nSA  =   (nf+ns+l)nL+ (nf + nL + 1) nA - nLnf 

- (nS + nA4 1)nL    ' 
(3.2) 

The cancellaiion of the first term nfnL and the last term  -nfnL removes the 

formal divergence in nf in (2.3), thereby reducing the enhancement in the Stokes 

gain.  Specifically, the steady-state solution to this equation for dnf/dt is 

V  ILRy"2(nS+nAfl)    ' 
(3.3) 

Substitution into (2.4) yields 

2,-3 dns/dx       ßl^y'Sngf n^D^I^y''  (nsrnA+I)   . (3.4) 

17 
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liiere is another process contributing to dn« /dx to this order -- the 

second-order process in Fig. 152, in which rwo laser photons ;ire annihilated and 

one Stokes and one anti-Stokes photons are created, with a fundamental phonon 

as the intermediate state.  Both time orderings of the vertices and both directions 

of the f arrow must be included as usual.   For this case of output photons having 

frequencies oo*  and cue» wliich differ from uJ,   by ±aJf. the intermediate-state 
2 2   2 

energy denominator [(a;,   - cOo)   " cof       vanishes.   The standard procedure of 

2 1~22~ 22 
replacing oof   by (co.- +   2  ^f )    * co,   + TrOO, then gives T, cof   for the energy 

denominator, and the standard perturbation-theory treatment yields 

dns/dx  -   ßclLR
2y'3(ns + nA+l)    . 

Adding this contribution from the two-laser-plioton process to the result (3.4) 

for the Stokes process gives 

dns/dx  =  ^I^y'1 (ns+nf + 1) + 20cILR
2y'3(nsf nA f 1)   . (3.5) 

Since the result (3.5) for dn^/dx contains n. , the equation for n.   must be 

considered simultaneously.   If every f phonon created in the Stokes process were 

annihilated in an anti-Stokes process, the anti-Stokes photons would be created at 

the same rate as ti^at of the Stokes photons.   However, there are other processes 

competing for the annilülatiun of the f phonons, such as the splitting of the f 

phonons into two other phonons Q and -Q, as an example.   Thus,  fewer anti- 

Stokes photons are generated in general, although the anti-Stokes generation rate 

can approach that of the Stokes photons. 

18 
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The equation for n.   corresponding to (3.5) is obtained by die same method 

used above: 

-1 .- 2     -3 
dnA/dx  -   ^LR >     (W+^LR   *    (nS + nA+n- (-^-) 

For y s 1, these simultaneous equations (3.5) and (3.6) for nA and ns are 

linear and can be solved easily as follows: lor y » 1, (3.5) and (3.6) can be 

written as 

äj-ül ^|n)  +   lu) ■37 

where | n ) is the vector with components ( A j n>  ■ n^ and < S | n >   « ng, 

that is 

(3.7) 

In) lu)->ßcILR 

nf+2ILR 

nfM+21LR 

and 

;£    ->    2 0    I c  LR 

1 " 2 ^R 

-1 
1 + 2 ^^ 

The arrow indicates the representation in the 1 A),  j S) basis.    ITie solution to 

(3,7)   with j n)   =  0 at x       0 is 

ll» 
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.1      dx -1       XiX 
n)   = ^'(e     -Dju)  = E   A.   (e      -1)1^) < 1. |u)   . 

i=±l   ' ' ' 
(3. 81 

where | I.) are the orthonormal eigenvectors of the Ilermitian operator sL and 

the X, are the eigenvalues: «t | i, )  ■  X. 1 £. ) .   The eigenvalues of ^ are 

and the eigenvectors are 

1 

li  (^iW2 ) 
1/2 

1.. x±(i+ rIIO- ) 

U+> - c+ 
T'LR 

1 ,     -2   ^ 
4 ^R 

(3. 9) 

(3. 10) 

where the normalization constants have the values 

1 + 1 
I'LR 

i i -1/2 
-1 

(3.11) 

The term i = + 1 in (3. 8)    is much greater than the term i =  -1 ; thus-, the 

scalar product of | n)  with | S)  is 

X, x 
ns  =   (Sin)  a   x;1     /e   '    - 1 |   ( S | £+)< £+| u >     . 

For lLR   <<   I'  K  ~ tclU\  '  (S \i+) '- C+  "   l' and K lu) 

* ^C'LR   ("f + ^^   Thus' (3.12) yields 

ns   a:   (nf + 1) 
^c^R x 

- 1 
)■ 

for ILR   «  j 

(3.12) 

(3.13) 

20 
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For 'LR >> r xf    "^^C'LR2' <sl ^f) : c
+ ' 2'1/2'and 

< 1+ | U )   5   4 ( 2 )''/2 |3c Ij K
2 . and (3. 12) gives 

2 
^C L: 

"s -   2 c for  ILK »   y (3. 14) 

llic low-dispersion results (3. 13) and (3. J4) are easy to interpret.   For 

I   „ «   j ,   n.  « n,. and dn^/d.x  is given by the first term on the right-hand 

side of (3. S),   which is easily integrated to give (3. 13).    For 1. „ >> j , (3.5) and 

(3.6) give dn. /d\ ft« dn^/dx and n.   *  ns in the gain region.   Thus (3. S) with 

n.   = n- gives dn^/dx *•   40   1. „ n«. which gives (3.14) on integration. 

The result (3.8) also indicates that the anti-Stokes intensity is comparable to 

the Stokes intensity when I. ., > 1 in the low-dispersion case. In particular, for 

I1K < i. IA/IS - llR. and for 1^ > 2 . IA / Ig ^ ! - Jl^. Ihese results 

follow directly from (3.H): Taking tlie scalar product of (3.8) with  ] A) gives (3. 12) 

with S replaced by A.   Thus, "A/iis  ■   (Aji >/<A|l >. With (3.11), this gives 

1        -1 I        -2   1/2 
"A^S  

=   "2  'l R     4 ^ ' '  4 'l R    ^     ' ^ om w^lc'1 r'"'c stated results are evident. 

It should be mentioned that even when    .   ar   I,,, the values of I„   and 1.   can be so AS S A 

small that second Stokes, second anti-Stokes ^nd ot     * higher-order intensities 

2 
are negligible.   Hie ci'ianccd-relaxation case of y   > 1 is considered in Sec. VI. 

21 
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IV,   TRANSIENT SOLUTION 

Tor the high-dispersion case, the transient solution to the coupled equations 

(2. I) and (2.4) is obtained as follows: Kroll's solution    for the case of no gain 

enhancement suggests a trial solution of the form 

ns   - n^ exp((Axt)1/2 - Bt  1 (4.1) 

with c«    ans/at negligible.   Hliminating nf  from (2.1) and (2. 4) by neglecting 

die nf and  1 terms, taking the derivative of (2.4) witli respect to time, and neg- 

11 2 2 lecting       ön^/at  and  ä   n^/ät    gives 

o   ns/dx9t  i rf (1 - 1IR )uns/öx - Cg1^  IlRns - 0      . (4.2) 

Substituting (4.1) into (4.2) ami solving for A and B gives 

ns  3  n^ exp[(4rf
2cs"1l1Kxt)1/2  -^(1-1^)1 ] (4.3) 

for 

iLKcs/rf
2 <:  t  <:   1LR il-lLR)-2U/cs)    . (4.4) 

In solving (4.1) and (4.2      he term  j (A /tx ) '     was neglected with respect to 

the terms that are independent of t.   Hie left-hand Inequality in (4.4) is required 

in order for this approximation to be valid. 

_2 
Substituting t ~- ILR(1 - Itn )     (x/c«) from the right-land side of (4.4) 

into (4. 3) gives the steadv-state solution nc   -   Uc,., exp (i3 ä). See (2.6). S SO 'gnew 

Here n^,. is the small value of n„  evaluated at the nonzero value of 

22 
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..t ■  I. ,. cc/r?, corresponding to the left-hand side of (4.4).   In other words, 

in considering the transient solution to (2.1) and (2.4), the very short-time, 

small-x region is neglected [ left-hand inequality in (4.4) |;   thus, the steady- 

state limit of this solution corresponds to the last term in (2.6). 

-2 
For t greater than this value, that is  t  ^ ^g E  ^R^1 ' 'LK^     (x/Cg), 

the steady-state solution is valid.   With the definition of fignew  under C2«6)» 

t      can be written as 
ss 

t --Tfß X(l   -  I.,,)'1    --    Tf gl.   X   (1   -I.,.)'2 (±2) 
ss f Kgnew i^< i       L ^'^ 

where Tf  ■   1 /Tf and  g  » F,/cs U   is often called the Stokes gain.   In the gain 

recion. ß x   •» 1  is satisfied; thus t      » T#.    lliis important result (4. S) s     ' Kgnew M » 
shows that the steady state is not reached until times much greater than the 

Reststrahl phonon lifetime Tf and that the greater x, the longer it takes to 

reach the steady state.   It is important to realize that tss is a function of Ij . 

Thus, in a curve of 1.   as a function of lg, the steady state could be attained at 

small values of Is while the transient solution applies at large values of lg. This 

would give a shape of the Is vs Ij   curve that is different from both the transient 

and steady-state shapes. 

The left-hand inequality in (4.4) is the same as Kroll's results since the en- 

hancement does not affect the region of very small ng. In the limit Ij R « 1 of no 

gain enhancement, (4.5) reduces to Kroll's result, t||g =  TfgILx, and the result 

(4.3) for ns reduces to Kroll's result. 

The transient solution for the low-dispersion case has not been considered. 

It is expected that central features will be the same as those discussed under (4. S). 

23 



■•»■^^^■»(i^pw——»—WWWWWB^WpWiiBM^WB^^pr—w»-—«»"-^»—•^pWtWWWWW»^ ^|^»»-w 

Sec. B 

V. RELATION BETWEEN THE CASES OF HIGH AND LOW DISPERSION 

Since energy and k conservation are involved in the arguments to follow, (2.4) 

is rewritten with the line-shape factor and wave vectors displayed explicitly 

dns(ks)/dx  - 2iT|VR|
2nL6(ws)[ns(ks) + nf(kL-ks)+l]   .      (5.1) 

According to (S. 1), ns(ks) is coupled "> nf (k L - kg).  The equation of motion of 

nf(kL -ks) is given by (2.1) and (3.1) with nf =  nf (k L - kg) and nA H nA(2kL-ks). 

where kA  -  kL+kf -  2kL-ks. 

The line-shape factor ödicg) in (5.1) is peaked at CüS = wL - cof - Cgkg = 9, 

where Wg = ^s
k

S' 
For Wg = 0, u:f = üJL - c

s
k
s'' thus» ^A 

= ^L4" ^f ' ^A 

becomes 

«A  =   2cLkL"CSkS "CA l2kL-isl 
(5.2) 

The peak in 6 (co. ) is at w» = 0, and the width is ~rf • First consider forward 

scattering kg - kL. Then |2kL-ks| =2kL-kg, with cA - Cg ^ 2 (cL - Cg) 

and k, - kg = Wf/Cg + kL (1 " cL/Cg), which is obtained by solving Wg = 0 for 

-kg and adding kLt (5.2) gives 

WA  =   6cccf  , 6C« 2(1-CL/Cs)[l+(1-CL/CS)WL/Wf)  .    (5.3) 

When the shift coA is less than the width rf, that is 

D E 6cwf/rf « 1 (5-4) 

then 6(ooA) ■ 5(a«g), while for D » 1, 5(CüA) « 6(u;s). Thu», for forward 

scattering, both (dnf/dt)A  and (dnf/dt)rg  defined as the right-hand side of (2. 1), 
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are included in dnf/dt when D  «  1.   Only (dnf/dt)rS is Included when 

D   »   1. 

In the latter case of D » I, called the high-dispers ion case, the previous 

results3 such as (2.6) are valid; while in the former case of low dispersion 

(D « 1), the anti-Stokes process must be included, as in the analysis in Sec. III. 

Specifically, nf (k .,   - kg) is coupled to ns(k <,) according to (5.1).   For forward 

scattering with high dispersion, nf(k L - kg) is coupled back to ns(ks) only. For 

low dispersion, nA(2kL-ks), nf(kL-ks) and ns(ks) are all coupled.   For 
2 

D » 1, Is should exhibit the jump; whik for D «  1, the expIL-gain result 

(3.12) is expected. 

The dispersion factor D in (5.4) can be written in terms of dn/dX as follows: 

The first two terms in the Taylor series expansion of c(X) give 

1 - cL/cs   ■   c^1 [dc(,\)/dX](Xs- XL)    . 

With Xs - XL = Cs/ws - cL/a:L ■ ^L
wf/^L  for wf/wL <<  1 • and c   dc/dX 

■   -n'   dn/dX, this gives 

1-c./Cg * (wf/wL)<X/n) dn/dX   . (5.5) 

With this result, the second term in (5.3) is equal to (X/n) (dn/dX ), which is 

negligible with respect to unity; thus 6C » 2(1 " C
L/Cs)' and ^'^ and ^-^ 

give 

D ^ (2a:f
2/üCLff )(X/n) dn/dX     . M 

For the rotational Raman mode in gases, D «   1 tends to be satisfied, 

while for solids, liquids, and the vibrational Raman modes in gases, D » 1 
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typically is satisfied.   For example, for liquid nitrogen12 with Wf   . 2,330 cm"1, 

aJL       1.44 xlO^m"1, rf - 0.0670 cm"1, n - 1.20, and a tvpical value of dn/dX 
-2 -1 

' 3x 10    (Mm)    , (5.6) gives D    230; thus, the previous results3 for high dis- 

persion are valid.   For the vibrational Qj (1) Raman mode in hydroi-en gas13 at 

300K and 100 atmospheres, Wf      4, ISO cm-1, ^   =   1.44 x ^cm'1,  r   « 1.1 x 10: 

cm" .   n -- 1.0, and dn/dX -   lO-'^^m)"1, (5.6) gives D      150.   Again, the high- 

dispersion results apply.   Finally, for the rotatio-.al S()(l) Raman mode in hydrogen 

gas at 300K and seven atmospheres, Wf = 243 cm"1, u;L   .  1.44 / 104 cm*1, T 

' 4.7 < 10"  cm"1, n = 1.0, and dn/dX - 7 x lO^Cjgn)"1, and (5.6) gives 

D = 8 x 10    .   Thus the low-dispersion results are applicable.   The« cases are 

discussed further in Sec. VII. 

Next, consider the case of scattering at angles away from the forward 

direction.   In the high-dispersion case, energy and k   are not simultaneously 

conserved   for the Stokes and anti-Stokes processes for forward scattering. 

However, energy and k can be conserved for scattering into a range of angles 6, 

where kL • kg  « cos 9.    Hie angle for exact energy conservation (line-shape 

factors infinitely narrow) is easily obtained as follows.   Consider the value of 

12 k,   -ks I in (4.2): 

1/2 
I^L-isI  "   [4kL2fkS2  -^Lkscose] 

For B «   I, this reduces to 

I^L'iSs'    "   (2kL-kS)(1  ' e2)   ■ 

Substitution into (4.2) gives   ^A    '•   6cü;f - u.', ö2.   Setting S*       0 gives 
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mxA c   f     L 
1/2 (^.7) 

For a typical case of 6c =   S x lO-3 and Wf/«L  ■   2x lO-2,  emxA -  W    radians. 

Physically, these results have the following significance.   In the high-dispersion 

case, (2.6) and the results of Ref. 3 are valid for forward scattering.   The Stokes 

intensity decreases and the anti-Stokes inter.sity increases as 6 increases from 0 

to 6 ,   At 6 = 9      . , wave vector and k  c-re simultaneously conserved for the 
mx A mx A ~ 

Stokes and anti-Stokes processes;  thus the low-dispersion results (3. 12) to (3. 14) 

are valid at 9 ^ 6      » .   As 9 increases further, both the Stokes and anti-Stokes 
mxA 

intensities decrease.   The anti-Stokes intensity is therefore strongest on i.ie sur- 

face of the cone of half angle 9mxA.   In Sec. Ill it is shown that the anti-Stokes 

intensity becomes comparable with the Stokes intensity when Ij R > 1 (for energy 

and k conserved). 

In considering the angle dependence of the Stokes and anti-Stokes intensities, 

the beam aspect ratio 

9 =    r. / L sam b'    sam 
(S.H) 

where rL is the radius of the laser beam and  L    m is the sample length, must be p Sum 

considered.   If 9      .   > 9        f the scattered Stokes and anti-Stokes radiation at 
mxA sa m 

angles ±9      .   leave the laser beam and Ig is not amplified over the full length 

L        .   Finallv. it should be mentioned that in experiments with multimode lasers, 
sam ' 

simultaneous conservation of energy and k   for the Stokes and anti-Stokes processes 

may be possible even in the forward-scattering high-dispersion case. 
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VI.  EFFECTS OF ENHANCED IMIONON RELAXATION 

1'irst consider the hiph-dispersion case.   'Hie enhanced relaxation of f 

reduces the value of n~ below that given in (2.6).    Iliis can be seen directly 

from (2.4) with dn~/dt   - 0, where reducing the value of n, and increasing 

the value of y in ß.     reduces the value of diu/dx.   For y   > 1, (2.4) with 

n, given by (2.3) is a nonlinear first-order differential equation which can be 

solved by direct integration since dn~/dx is a function of n^ only. 

ITie behavior of the solution can be determined by considering limiting cases. 

Prom Ref. 4, 

y2   -   (1 - rynp)'1 (6.1) 

where n    is an upper bound to n. defined as 

np/N  =   p(HQ+  j ) r^/SQu;t.rf      . (6.2) 

where TQ is the relaxation frequency of the phonons Q into which f ilecays, p/Sn 

is a constant of order unity typically, and  N is the number of unit cells in the 

crystal.   Substituting (6. 1) into (2. 3) and neglecting y  nf *   I...  in (2. 3) gives 

(y2 - l)iy2 -l^) -- y2l2 (6.3) 

where I     s   I. n nc / n   . 2 LR   S'   p 

Negligible phonon enhanced relaxation corresponds to L «  1.   Tlien, in the 
2 

region of interest (I,-  <   1), (6.3) gives  y     si.    Ilius, the solution (2.6) is 

valid as expected in the absence of enhanced phonon relaxation.   The solution to 

(6. 3) for arbitrary L is 

2S 
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(I ' I 1J< '   l2 >   I   ^ 
4 I LK 

(IM^^) 

1/2 

(6.4) 

For the case of a lar^e plionon enhanced-relaxation effect (L, » •), (6.4) 

jjives 

2     ' 

Sulistituting this result into (2.4) gives 

dls/dx   -   ^U^IpIg) 
1/2 (6.5) 

1  «2 
whicli has tlic solution Is  =  T 3C '[j^ U«    Plus a constant.  This value of Ig is 

less than the value from (2.6) and ls is increasing rather slowly as functions of 

I. H (linearly) and of x (square law).   The behavior of Ig  as a function of Ij R 

according to the limiting cases of (6. S) and (2.6) is illustrated schematically in 

Fig. 153. For n    - o",   the result (2.6) for no enhanced phonon relaxation is valid 

for all I, „ *C 1.   As n    decreases, the deviation from (2.6) occurs at smaller 
I.K p 

values of I„ as shown in the figure. 

Next consider the low-optical-dispersion case.  We seek the solution of (3. S) 

2 
and (3.6) for the case of y   > 1.   It is clear that values of ns and nA are re- 

2 
duced when 7   > 1 since both dHg/dX  and dn^/dx  are decreased according 

to (3.5) and (3.6).   limiting cases of these nonlinear, coupled differential equa- 

tions will be analyzed to determine the effect of the enhanced phonon relaxation. 

The value of y is obtained from (3.3) with nf/n   << ' and ns f nA >> 1' 

which are well satisfied: 

I   f   I SA2 
(6.6) 

2^ 
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where ^2 =   ^^S^^)/^'    Notethat 4 '    ^2 "  212 Since 'A"  'S' 
The f-mode amplitude is, from (6.6) and (6. 1), 

nf/np   =   ISA2/(ISA2 + 1) (6.7) 

The behavior of the solution to (3.5) is simple.   For no Stokes input, n~ = 0 

at x = 0.   First consider the case of !.„ «   1, for which n.   is negligible.   For 

very small x such that n„ «   n- + 1 and ns f nf  « 1, n^ increases linearly 

with x.   When n^. reaches values » n, + 1, it increases approximately exponen- 

2 
tially until y   - 1  « 1 is no longer satisfied.   For example, for I. .,   «    1 , 

n,, »  nf + 1, and y ft  1, (3.5) gives 

ns   ~  exp^I^x) 

As n^ increases further, y   becomes greater than 1, according to (6. 6).   For 

1/2 
1
QM  -   IiRnc:/n^ >>1'  y -  (*fiiIlc/n«)      • and (3.5) gives SA2 LR   S'   p LR   S'    p 

dns/dx   2=  ßc(ILRnpns) 1/2 (6.8) 

According ü  (6.8),  n^ increases rather slowly as x . 

Next consider the behavior of nc.(x) for 1. R » 1  formally.  For n^ «   1, 

Uc increases linearly with x.   Notice that the slope is proportional to I. R , rather 

than I. .,  as in the usual spontaneous-emission region.   For n- » 1 and ICAO 
<< 1» 

(3.5) with n.   2? iig  gives 

2 
ns   ~   exP(43c

Iy^ x)     • 
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As n,,  increases further,  L^- 

-3 

21, nie/l«  is no longer negligible, and the 

y     terms in (3. 5) reduce the rate of increase of Ug.   For lSA2 » 1 , (3, S) be- 

comes 

1/2 \1/2 
dns/dx   =  ßc    (ilLRnpns j        +20c     ( ^o np

3/2 ns ) 

2 
so that n„ again increases as x    at very large values of x. 

For a given thickness x, in the spontaneous-emission region at very small 

values of l.R, n„ is ^"oportional to I-_. For greater values of ILR, ns in- 

creases according to (3.8) as long as Ig^ <<   * ! i-c- • ns <<  2" "p^LR ' 
9 

For larger values of L , y    increases and ng increases much less rapidly than 

1 2 
in the case of y   =   1.   For ng » ^ "p/^R » ns  is ProPortional to l

L\\ (tirnes x '• 

This behavior is similar to that already illustrated schematically in Fig. U3 for the 

case of high dispersion. 
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VII.  APPLICATION TO EXPERIMENTS 

There is evidence for the enhanced Stokes gain throughout the literature in 

various types of experiments in gases, liquids, and solids. However, there 

is little data for which accurate quantitative comparison with experiment can be 

made, a notable exception being the experiments on liquid oxygen and nitrogen by 

12 
Grun, McQuillan, and Stoicheff.      As the laser power was increased, the Stokes 

power exhibited successively regions of spontaneous emission, gain, the jump, and 

a saturation region of little further increase. See Pigs. P4 and 5.   'ITiere was no 

self focusing.   All known mechanisms for explaining the jump, with the possible 

exception of oscillations due to feedback by Rayleigh scattering, were ruled out 

by the authors.   A simple calculation indicates that Rayleigh scattering is orders 

of magnitude too small to cause feedback oscillations.   Por liquid nitrogen, the 

value of D = 230 obtained in Sec. V indicates that the high-dispersion results of 

Ref. 3 and (2.5) are applicable.  The excellent agreement with the experimental 

results over the full 11-decade change in !„ is seen in Pig. B4.   Hie theoretical 

curve was plotted using the theoretical value of ß    =  F,/Cq = 0.51 cm     and the 

observed values of the spontaneous-emission and saturation Stokes intensities and 

adjusting the value of IR  slightly to position the jump properly.   Thus only the 

scale factors for the axes, and not the shape of the curve, were adjusted to fit 

the experimental points.   Adjusting ß    to smaller values improves the fit, but 

is unnecessary in view of the already satisfactory agreement and the scatter in 

the experimental points.   The jump, the saturation at large 1. , the transition 

from unamplified to amplified spontaneous emission, and the previously unex- 

plained magnitude of g and deviation from exponential gain in the gain region 
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0.3  < I, /L,   < 0.4 (resulting from /? > Ö    =  ul, ), arc apparent in the 
L    R B ^gnew       Kg      B L ' 

theoretical curve.   Second-order StoVs. s radiation was otnwrved at high intensities, 

as expected.   In this experiment and those below with one input beam, rf   =  F- 

should be satisfied. 

Hie agreement between the theoretical result (2.5) and the experimental 

12 
points      for liquid oxygen is slightly better than the agreement for liquid nitrogen 

as seen in 1 ig. B^. Also, the experimental and theoretical values of the ratio of 

the values of 1..   for (),, ;ind N., are in surprisingly good agreement:   In the spon- 

taneous-emission region (j3r « 1 ), (2.5) gives L ~ (rf/c~ I., ) 1. .   'Ilius, 

1,, ~ rf(c„S)    , where S is the slope of tlie I^ vs I.   curve.   Clements and 

1H 
Stoicheff      liave shown that the ratio (O- to N,, always) of the rf's is 0.117/0,067 

1,75.   'ITie ratio of the cv's is 0. 99, and from Ref. 12 the ratio of the slopes is 

1.3,    Thus, the ratio of the 1,,'s is 1.75/(0. 99) (1. 3) -   1.36, which is in much 

better agreement with the experimental value of 1.23 than expected in view of un- 

certainties in the experimental values of the parameters. 

13 
I lagenlocker and coworkers      observed that the vibrational Raman Q.U) 

Stokes power generated by a laser beam focused in hydrogen gas at 100 atmo- 

spheres and room temperature, where self focusing is not expected, increased 

by 10 to 11 orders of magnitude as the laser power was increased by a factor of 

two. Sec Fig, 11 of Ref. 13.   Such a sharp increase cannot be explained by normal 

13 
stimulated Raman gain,      but agrees well witli tlie present theory.   For the vibra- 

tional Raman Q.(l) mode in hvdrogen gas at 100 atmospheres and 300 K , for which 

the steady state was obtained in the experiments, the value of D -  150 obtained in 

Sec. V  indicates that the high-dispersion results are applicable; thus tlie observed 

jump is expected. 
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19 
The laser intensity at the threshold was estimated      to be of the order of 

2 10-1 -9 
250 MW/cm .   From the values of rf       2 x 10    sec     and 0c ^ R / Ij = 1. 5 x 10 

cm/W, the theoretical value of L  is rfI. /^cß  Iin   = 450 M\V/cm .   'Hie agree- 

2 
ment is satisfactory since the experimental value of 250 MW/cm   is only an order- 

of-magnitude estimate and the values of the parameter in the theoretical result are 

uncertain. 

In the same experiments,  ILigenlockcr and coworkers noted that for the rota- 

20 tional Raman Sn(l) mode     in H9 gas at seven atmosplieres and 300 K ,  £n 1^. varied 

as 1. p , rather than I. R as expected at that time.   As illustrated in Fig, 1>^, the 

agreement with the low-dispersion theory is excellent over the full range of 13 

-2 
decades change in !„ .   From Sec. V, D = 8 x 10    , indicating that the low-disper- 

sion, exp(I. .. ) results of Sec. II are indeed applicable. 

Li spite of the good agreement between experiment and theory in both of these 

cases of IL gas, difficulties in explaining the results remain, particularly con- 

cerning the pressure P dependence of the threshold.    Hie theory predicts that 

L.  ■ const. rf
2/l'.   With21 rf  - 9. 4 x 10  sec     at 10 atmospheres and  rf 

- 3. H x 10    sec     at 100 atmospheres, this result gives 

IR(10()atm)/lR(10 atm)  =1,6   . 

13 The experimental value '   of this ratio is 0.25.   Hven though the steady state was 

not reached at 10 atmosplieres, this decrease is not expected.  A previous explana- 

22 tion      of the decrease in terms of a transient analysis seems to be in error.   ITie 

predicted ratio was the same as that predicted here, but the experimental ratio is 

1/4, rather than 4 as stated in Ref. 22.   Enhanced gain from feedback is always a 

possibility in high-gain systems, and this effect could set in at values of I.   < IR , 

thus rendering the parametric-instability enhancement unobservable. 
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McQuillan, Clements, and Stoicheff     observed a very sharp jump in Ig as a 

function of I,  in diamond.   No evidence for self focusing was found.  Their explana- 

tion of the jump as a feedback oscillation is plausible and may well be correct. Hie 

reflectance is 0.17 per surface.   However, it is also possible that the instability is 
2 

involved.   The theoretical value of L is 4. 4CW/cm , and the experimental value 
2 

is 'at least ~ 1. 1 GW/cm ."   It should be possible to determine the source of the 

jump by, for example, tilting the sample and optical components at an angle with 

respect to the axis of the beam in order to avoid amplification of the specularly 

reflected Stokes beam.   It is possible that a combination of feedback and the para- 

metric instability are involved in the jump. 

One fact favoring the instability mechanism in diamond is that the jump occurs 

in the spontaneous-emission region rather than the gain region.   The Stokes power 

is linear in 1.  up to the threshold, as seen in Fig. 5 of Kef. lb.   Hie oscillation cri- 

terion is that 0. ITexpl^Ij^x) = 0.17exp(gil[ ) - 1, which gives expgilj 

= exp(1.8).  From (2.5), in the spontaneous-emission region, exp(f;i,Ij )-l ^ gi ^ . 

Since exp(1.8) - 1= 5.05 » 1.8, a significant deviation from linearity should have 

been observed if the jump were caused by feedback. Physically, gain is required for 

feedback oscillations, but the jump occurred in the spontaneous region, not the gain 

region. Another factor favoring the instability mechanism is that the observed damage 

threshold is com  stent with the instability mechanism, but not with the feedback mech- 

anism: Since the absorption (by the inelastic-scattering process)is not strongly peaked 

at anv volume element in the crystal in the feedback case, the temperature rise is 

(in9W/cm2)(l()'8sec)(n.218cm)"1(l.S6j/cm3K)"1(1332cm"'/14,403cm  ') = 3K -1       -1. 

for complete conversion of 1.  to L.   For "he instability case, the absorption length 
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becomes extremely short as I. .,  approaches unity.   Ilius, the heated volume is 

assumed to be limited by thermal diffusion.   With a diffusion len^h of Ißm for 

-4 
10 nsec in diamond, the temperature rise is ( 3 K ) (0.218 / 10     ) = 6,000 K , whict 

is greater than the fracture temperature and melting temperature of diamond. 

lliis calculation showing that diamond damages at I.   ^  !„  illustrates a res>ilt 

that should be common to many Raman-active crystals.   This is an important result 

9 2 
since the ;\nical values of IR s 10  W/cm   are much smaller than typical values of 

10 2 
~ 10     W/cm   for breakdown in crystals, such as rocksalt-structure crystals, that 

are not Raman active.   Monitoring the Stokes intensity in damage experiments would 

be interesting. 

Since the instability may be involved in limiting the diameter of self-focused 

beams, measuring the Stokes intensity in self-focusing experiments also would be 

23 
desirable. Indeed, Loy and Shen      found that the laser light at the forward-moving 

focus was converted into Raman radiation at such a high rate that little was left to 

be detected over the background. Additional experiments to determine if seli-focusing 

diameters are limited by the stimulated Raman scattering process would be useful. 

A rough estimate indicates that the mechanism is feasible. With Ij i> — 10 at the 

3 11      -1 2 
focus in toluene,  the transient result (4.3) gives n,, as n„n exp[4(3.7x 10    sec   )  10 

x(0.2cm)(10'     sec)/2xl0    cm/sec] '    = 10    n„n, which is sufficient to give 

complete conversion to Stokes radiation. It was assumed that the Stokes radiatirn 

remains in coincidence with the forward-moving for as for 10      sec (corresponding 

to a focal region of length Mfpn moving at velocity =  1.03 Cj,, for example). 

hi distinguishing between the parametric-instability source of the jump and 

other sources, it is useful to realize that the jump is in ls as a function of 1., 

but there is no jump as a function of sample length x.    Ilius, the jump in I« vs x 
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.24 observed      in nitrobenzene at an unspecified constant value of I,   is expected to 

be the result of self focusing.   Indeed, this was verified in subsequent experi- 

»   25 
ments. 

Jumps similar to those discussed above have been observed in other investiga- 

13-17 tions in gases, liquids, and solids, ' but .ocusing and/or self-focusing make 

accurate comparison with the theory difficult.   Nevertheless, a number of observed 

jumps may result from an increase in intensity by self focusing and the parametric 

instability in the region of high intensity. Amplifiers have not reached their ex- 

pected gains, as the jump could not be suppressed no matter how much the feed- 

back was reduced.   Hie present interpretation of the jump as the parametric 

instability ;it I.   » L.  explains the insensitivity to and lack of need for feedback. 

Next consider the experiments in which both laser and Stokes beams are 

incident on the sample, with both intensities 1.   and lg less tlian U.   Using the 

results of the present paper it is easy to show that in the experiments of Colles 

23 and Giordmaine '   the value of nf approaches the upper bound n    closely (n, 

s 0. 994 n   ).   In the absence of the enhancement of the f phonon relaxation fre- 
P 

quency, the value of nf would have been a factor of y    i: 175 greater.   Ilie esti- 

mates in Ref. 29 correspond to this greater value, since the enhanced-relaxation 

effect was unknown at the time of the experiment. 

'Hie detection of the phonon instability in these experiments has been difficult. 

A simple method of observing the phonon instability would be to observe the Stokes 

output from a sample with the incident Stokes intensity zero or very small.   Hie 

values of thickness x and intensity 1. R are chosen to make L.^ « 1 at room 

temperature and 1^..^ » 1 at some low temperature such as 77 K .   Hstimates 
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Indicate that these temperatures should be appropriate for diamond.   The 

experiment affords a method of determining the magnitude and temperature de- 

pendence of the lifetime TQ    of the phonons with ecu + U;_Q  =  UJf. Non-normal 

incidence should be used to avoid feedback-type oscillations resulting from re- 

flections at the surfaces, and care to avoid other reflections should be exercised. 

30 
It should be mentioned that for ultrashort lifetimes of the Q phonons,     the steady 

state may not be reached during the laser pulse duration. 

Discussions with Dr. R. Orbach on the size of TQ are gratefully acknowledged. 
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Figure Captions 

Fig, Bl. Diagram of the Raman Stokes process R and phonon process P. 

Fig. B2. The higher-order processes contributing to Stokes-photon generation. 

Fig. B3. Schematic illustration of the effect of the phonon instability on the 

Stokes intensity. 

Fig. B4. Stokes-intensity-jump results in liquid nitrogen showing experimental 

12 
results (crosses) of Grun, McQuillan, and Stoicheff,      the previous theoretical re- 

sults, and the present theoretical results.  The portion of the curve in rlie satura- 

tion region 1. /IR  > 1 is from Ref. 3. 

Fig. BS« Stokes-intensity-jump results in liquid oxygen showing experimental 

12 
results (crosses  of Crun, McQuillan, and Stoicheff,      and the theoretical result 

from (2.6) (soliu curve).   The dashed curve showing the saturation is sketched, not 

plotted (in contrast to Fig. B4), since the saturation region is not of primary concern 

here. 

Fig. Kb. Comparison of experimental rotational Raman Sn(I) Stokes power in 

13 2 
hydrogen gas of Ilagenlocker, Minck,and Rado     (points) with the expl. -gain re- 

sults and original theoretical results.   The saturation of I„ for 1.   > 4 results 

from the depletion of the laser beam.  The ordinate is in relative units and the 

numbers on the abscissa correspond roughly to power in megawatts, according 

to Ref. 13. 
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C. ENHANCED STIMULATED RAMAN SCATTERING ANT) GENERAL 
TWEE-BOSON PARAMETRIC INSTABIUTIES* 

M. Sparks and J. H. Wilson 

Xonics, Incorporated, Va.. Nuys, California 91406 

\ recent theory of stimulated Raman scattering explained a Stokes- 

intensity enhanced gain that had been observed but that was not predicted 

by earlier theories.   It is shown that in the earlier golden-rule analyses 

(perturbation theory treatment of occupation numbers) the enhancement 

was lost by neglecting the increase of the vibraticnal amplitudes above 

their thermal equilibrium values.   Hven though the probability of an indi- 

vidual ion or molecule being excited is small, the occupation number of 

the phonon in the Raman process is large.   In the previous mode-amplitude 

analyses, the enhancement was lost in the method of linearizing the non- 

linear differential equations.  By solving these same mode-amplitude equa- 

tions without using the previous linearization scheme, the enhancement is 

obtained and the equivalence of the mode-amplitude and golden-rule Boson- 

occupation-number analyses is demonstrated explicitly.   The analysis shows 

explicitly that the loss of phase information in using the Boson occupation 

numbers is unimportant.   The results are applicable to other three-Boson 

splitting processes that are important in ferromagnetism, phonon inter- 

actions, plasma instabilities, .'nd device physics. 
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I. INTRODUCTION 

1 2 3 
Stimulated Raman scattering was first observed   and analyzed '    in 1962. 

It was recently realized    that a parametric instability in the Raman Stokes pro- 

cess causes a Stokes-intensity gain enhancement that explains a number of ob- 

served anomalies including a nearly discontinuous increase, or "jump," »r. the 

Stokes intensity Is as a function of the laser intensity 1L in the absence of self 

focusing and feedback.   Hie original purpose of the present investigation was to 

2 3 determine why the early theories '"   did not give the gain enhancement, while 

the later theory   did.   In addition to identifying the assumptions in both types of 

the early theories that led to the loss of enhancement, the equivalence of the oc- 

cupation number (n) rate-equation analysis and the mode amplitude (a and a   ) 

analysis is demonstrated, and the loss of phase information in the occupation- 

number analysis is shown to be unimportant.   The results are of interest in the 

general three-Boson splitting problem, which arises in a number of fields of 

physics, as discussed below. 

The characteristic feature of a parametric instability is that as the amplitude 

nn of some mode 0 increases, tlw amplitude n,   of a mode k that is coupled to 0 
() * 

first increases slowly, then increases rapidly to a great value as n^ approaches a 

critical value n  .   For example, in the Raman process a laser photon is annihilated, 

a Stokes photon is created, and a fundamental (Resistrahl) phonon is created. As the 

laser-photon occupation number iij   approaches a critical value nR , the occupation 
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numbers n, and n« of the fundamental-phonon and Stokes-photon modes become 

very large. This increase in the value of n- is the gain enhancement and "jump' 

already mentioned. 

Any three-Boson splitting process is potentially unstable parametrically. 

There are analogies between the instability in the Raman process and previously 

studied instabilities in ferromagnetic resonance      (premature saturation of the 

main resonance subsidiary absorption below the main resonance, and parallel 

S 9 
pumping absorption), plasma physics,    and electronic devices. 

The physical interpretation of these instabilities is rather simple. The balance 

of energy (-)Ut into the f phonons by the Raman process against that removed from 

the f phonons by relaxation is a key to the explanation.   The power out by relaxation 

(by interaction with impurities or other phonons, for example) increases linearly 

witii the number of phonons nf, which is just the condition that a relaxation time 

exists.   On the other hand, the power into the f phonons increases nonlinearly with 

increasing nf since the Raman process is a three-Boson process (which results in 

products of Boson occupation numbers in the expression for the power).    Thus, at a 

critical value of the laser intensity, the amplitude n. becomes very large. 

Previous analyses of stimulated Raman scattering and other parametric pro- 

cesses used either the equations of motion of the Boson occupation numbers obtained 

from perturbation theory (the golden rule) or the equations of motion of the mode 

amplitudes (creation and annihilation operators or Fourier components and their 

complex conjugates of the electric field, for example).   The equivalence of the re- 

sults lias not been demonstrated explicitly in the past.   Indeed, in the case of stimu- 

lated Raman scattering, the previous results from the mode-amplitude analysis do 
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not give the enhancement obtained by the recent occupation-number analysis. 

Furthermore, concern lias been expressed that the loss of phase information in 

3 
using the Boson occupation numbers may be important. 

In the present paper the relation between the two approaches is demonstrated 

explicitly and the points in the previous analyses at which the enhancement was lost 

are identified.   In the previous golden-rule type analyses, the enhancement was lost 

by neglecting the deviation of the vibrational amplitude from the thermal equilibrium 

value. Even though nf becomes large as mentioned above, the probability of an individ- 

ual ion or molecule being excited is small, roughly speaking. Specifically, nf/N « 1 

is usually satisfied, where N is the number of unit cells or molecules.   It was this 

fact that the individual ions or molecules are not highly excited that led to the as- 

sumption that the thermal equilibrium values were maintained in the previous analy- 

ses.   There are similar results for other three-Boson processes.   For example, in 

ferromagnetism, magnon occupation numbers are large at the threshold, while the 

probability of an individual electron spin being in the reversed-spin state is small. 

In the previous mode-amplitude analyses, the enhancement was lost in the method 

of linearizing and decoupling the nonlinear differential equations for the mode ampli- 

tudes a. , aQ, af, and their complex conjugates (or Hermitian conjugates in the 

quantum-mechanical solution). It is shown specifically that reducing the nonlinear 

equations to parametric linear equations (that is, linear equations with time-depend- 

ent coefficients) by assuming that the laser-field amplitude a.   ^ b. expHa;, I),where 

b.   is a constant, results in the loss of the enhancement.   The same linearization scheme 

applied to well known magnon or plionon parametric instabilities results in the loss of 

the steady-state solution, even though damping is included and i steadv-state solution 

is expected on *he basis of simple physical arguments. Bj solving the same equations 
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without using this linearization scheme, the difficulties are removed and the 

equivalence of the mode-amplitude and golden-rule results is demonstrated ex- 

plicitly for the stimulated-Kaman-scattering and magnon problems. 

In considering the occupation numbers rather than the mode amplitudes, phase 

information is lost. A priori it is not expected that the loss of phase information is 

important since the parametric process amplifies the thermally excited waves that 

have the proper phase,  lliis was indeed the case in previous analyses. It should be men- 

tioned that wave vector and frequency phase matching are included in the occupation 

number approach. Wiive vector phase matching arises from Kronecker deltas in 

sums over wave vectors,and frequency phase matching arises from the energy- 

conserving delta function.    Hie present calculation settles the question by showing 

explicitly that the phases are unimportant. 

The present analysis is concerned only witli the steadv-state solution. Important 

results are indicated by underscored equation numbers. 
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II.    FERROMAGNETIC PARAMETRIC INSTABILITIES 

In this section tlie analytieal method is applied to the simplest three-Boson 

parametric instability.   Hie process, illustrated in Fig. Cl, is the annihilation 

of one Bosoi: 0 and the creation of two Bosons having equal frequencies and 

damping, with negligible propagation of all three Bosons.   As specific examples, 

in the case of ferromagnetic subsidiary-resonance absorption,'       Boson 0 is a 

uniform precession (wave vector k = 0) magnon, and in parallel pumping. 

Boson 0 is a photon in the microwave cavity.   In both cases, the output Bosons 

are magnons having wave vectors k and - k .  Propagation effects are negligible 

since the magnons cannot propagate out of the sample ami the sample is small 

with respect to the electromagnetic wavelength.   The process also represents 

phonon processes     and other Boson processes. 

It will be demonstrated that the equations of motion of the mode amplitudes van 

be solved to give the golden rule results (expressions for occupation numbers ob- 

tained by use of perturbation theory) directly.   The same mode-amplitude equations 

will be solved by an approximate method of converting nonlinear differential equa- 

tions into linear differentir1 equations with time-dependent coefficients, or so called 

parametric equations.   This approximate method, which is the same method used in 

the early treatments of the stimulated Raman scattering, gives incorrect results in 

the present magnon problem, as it did in the stimulated Raman scattering problem. 

Hie Hamiltonian is 

K   - fi a;nana(. + fi co, a, a    + fno_a_a_  - (ifiBa^a   a_  +cc) (2.1) 

i. 
i 

the 0, * k , and - k Bosons, respectively, and B is a complex constant that is 

where a.   and a. with i = 0, +, or  -   are creation and annihilation operators for 
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•ig. Cl. ThrecBoaon splitting process that exlilblts ;i parnnietric Instability. 
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obtained in converting the Hamiltonian from spin operators to magnon creation and 

7 
annihilation operators. 'Hie v ilue of B will not be needed here. 

The equations of motion for the a's and as are obtained from the Heisenberg 

equations of motion: 

da+/dt   -   -i[a+,Kl (2.2) 

wiere [a ,K] is the commutator of a+ and K. Hvaluating the commutator in (2.2), with K 

given by (2. 1),by using standard relations such as [a+, a+ ] » +1 and [A, BC] 

= [A,B]C + B[A,C] gives 

da 
+ 

+ /dt   ■   ■lW+«+ -  Ba0a_   - > a+ (2.3) 

1 
Tlie term -ya    was added formally to account for damping.   Repeating for a_ and 

a0 gives 

da_/dt  = >x_a_ - B*«J«+ -ya_ , (2.4) 

da()/dt   =  -iu^a0  + B  a+a_ (2.^) 

Tliis set of equations (2.3)-(2.5) and the Herminan conjugate equations is a set of 
t 

six nonlinear differential equations for the six variable a. ;'nd a.   with I » 0, +, -. 

One method of solution is to linearize the equations by formally assuming that 

an = b« e       ü    and a,   -   b() e where bp and bn are constants.   Then (2.3) 

and (2.4) are a set of two parametric differential equations for a+ and a_ .   Substi- 

tuting these expressions tor a„ and a,, along "'ith a+ ■ b+exp(-ia;f t) and a_ 

= b   exi) (iui  t) into (2.4) and (2. 5) and performing the derivatives gives 
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db+/dt  ■ Bb0b_  - yb+ 

db^/dt  ■ B*b*b+ -yb. 

(2.6) 

(2.7) 

The time-dependent coefficients were eliminated by assuming that the resonance 

condition u^ =0.'    + u;   is satisfied.   Since these two equations are linear with 

constant coefficients, their solution is simple.   Taking the derivative of (2.6) and 

using (2.7) gives 

d2b+/dt2 + 2y db+/dt + (y2 - |Bb0l
2)bl   -  0     . (2.8) 

Substituting the trial solution b+ = b+f exp(Xt) into (2.S) and taking the derivatives 

gives 

A2 ¥ ly\ My2 - |Bb0|
2) = 0 

which has th, solution 

X  =   -> ±|Bb0|      . 

Thus, the solution to (2.8) is 

"K1  -yt |h(+)  I'^ol1    .(- 
1    =  e c       I b+   e + b+ 

|Bb0|l 
(2.9) 

There is no non-zero steady-state solution except in the singular case of |Bb. | = y. 

Tlie common expression "parametric instabilit\" arises from the fact that a+ becomes 

infinite as t -♦ »  when the amplitude | b« | of the zero mode is sufficiently great, 

that is, when 

|bn|
2>y2/|Bl2 (2.10) 
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Hüs solution  (2.9)   clearly is incorrect.   Physically, a nonzero steady-state 

solution is expected for any value of a0, and this is confirmed experimentally. 

In the analogous treatment of stimulated Raman scattering in the following section, 

this parametric linearisation method also leads to difficulties.  Specifically, the 

enhancement in the Stokes gain is losl. 

To resolve the difficulty, a method of solution other than the parametric lin- 

earization used above is needed. One approach would be to linearize (2. 3) simply 

by considering ana_ as a single variable.  Since ^Q
3
. is coupled to a+ accordi^ 

to (2.3), the standard procedure is to consider the equation ef motion for "Qa_. 
+ t 

If this equation contains only a    aid a0a_ (and no product a+a()a   \ then the two 

linear differential equations could be t-asily solved.   Unfortunateh the equations 

do not uncouple at this step.   Furthermore, taking the derivatives of the additional 

variables that appear in the ana_ equation couples in still more variables, and the 

chain of equations becomes large. 

A simpler method is to start with the operator a+a+ ■  n+, rather than a+. 

Then the Heisenberg equations give 

dn   /dt   ■   C - Tn (2.11) 

where C ^  B ana^a     ^ cc, and -Ta  a    is added to accoun» for damping,   ihis 

+ f 
same result (2. 11) can be obtained from the equation da   a + /dt = a+da+/dt + cc 

with da   /dt given by (2.3) and T =  2y.   Ibe factor of 2 ii T = 27 arises as 

usual from the fact that ii ~ exp(-^t) implies  |a |   - exp(-2>'t).   This second 

derivation of (2. 11) establishes the consistency of introducing -y«    into (2.3) and 

-Tu   .i    into (2. 11) and shows the equivalence of the two equations. 
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From dG/dt  = B(da0/dt) a+ a^ + Ba0(da|/dt) a_ + Ba, a   da_/dt + cc 

and (2.3)-(2.5) and rheir Hermitian conjugate equations, there results 

dCJ/dt   =   2 |Bl' n0(n+ f n_ f 1) - n+ n - FG     . (2.12) 

By the same method, 

dn_/dt  -   G -rn_ (2.13) 

dn()/dt  =   -G   . (2.14) 

There are several physical situations for which the solutions to (2. ll)-(2. 14) are 

of interest.   The first is that to which the golden rule is commonly applied.  That is, 

at time t = 0 the system is      the state in which tu » IU, where n.. is the thermal- 

equilibrium value of n,,, and all other modes are in thermal equilibrium,  roughly 

speaking.   The perturbation -ifiBa^a   a_ + cc is then applied for a time short with 

respect to the time for n^ to reach n.,, but sufficiently long for energy conservation 

to be well satisfied.   The case in which n(, is maintained at a constant value by the 

microwave f'eld in the cavity also is of interest.   In hoth of these cases, n.. is con- 

stant, or approximately constant.   However, dn./d. in (2. 14) is not zero because 

(2.14) is only the contribution to the rate of change of n« from the coupling to the 

-^k modes.   Stated differently, fiu;rdnn/df  from (2.14) gives the power from the 

zero mode to the pair +k , which is not zero in the steady state. The contribution 

to dnn/(1t  from the coupling of the zero mode to the microwave field could lie 

added, but this would carry us too far from the issue M hand. 

The steady-state solution to (2. ll)-(^. 13) is ohtained hy setting d('. /dt 

- dn+/dt   = 0 and solving for n    and n_ .    Iliis gives 
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n    =  n, 2 IB i2r2 n0(2n++ 1) - n+ 
(2. 15) 

which are the standard results obtained from the golden rule.  The complete solution 

to (2.15) is simple, as discussed in Ref. 10.        For the present purpose, it is suf- 

ficient to neglect the n    term, which corresponds to neglecting saturation.   Then + 
(2.15) gives directly 

n i Ü2       * 
2   nc    l-n0/nc 

r2/4lB|2 (2. 16) 

This same result is obtained simply from the golden rule as follows:   The 

standard expression (2 IT /fi2 ) | (f | K | O 12 6 (cc) for the transition ri.re between 

states | i) and 1 f ) gives 

dn+/dt = (2t/*   ) |X|: -  iKl.     [   P(W) - rn+ 

2 .2 
where | K I     is the matrix element for increasing n+ by one, |X|. is that for 

decieasing n    by one, and p(to) is the density of states. For a single transition 

7 6 4 
on resonance (OJQ » W+ + W.) the appropriate value of p(w) is '       p(w) = l/ffT. 

Using the usual expressions for the matrix elements of the a's and a 's gives 

dn+/dt =2lB|2r'1 (n 4 1 ) (n_ + 1) n0 - nf n_ (n0 + 1) Fn    .     (2.17) 

Since the bracket factors in (2.17) and (2.12) are equal, the steady-state solution 

to (2.17) is given by (2.16) as already mentioned. 
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Hven though only the steady-state case is considered here, it should be 

mentioned that the transient solutions of (2.17) and of (2. ll)-(2.14) are different 

in general.   The simplest case of n   n_ negligible,   i+(0) ■ constant, and n0 

- constant can be solved trivially to illustrate this point. 

I 
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III.   MODH AMPLITUÜI- ANALYSIS OF ENHANCED 
STIMULATED RAMAN SCATTERING 

'Hie Raman scattering process is more complicated than the ma jnon (or phonon) 

case just considered because propagation of the laser and Stokes photon must be in- 

cluded.   In almost all practical cases the damping of the two photons, but not of the 

phonon, is negligible; thus the photon attenuation is neglected. 

The mode amplitude equations have been obtained classically from Maxwell's 

equations with terms added to account for the coupUng of the electromagnetic and 

elastic waves.'       Specifically, an interaction Lagrangian was added to the sum 

of the electromagnetic and elastic Lagrangians and the field-amplitude equations 

weie obtained from the Lagrangian.  The resulting second-order partial differential 

equations were reduced to first-order partial differential equations    '      by standard 

methods. 

In order to establish the connection between these first-order partial differen- 

tial equations for the mode amplitudes and the equations for the occupation numbers, 

the mode-amplitude equations will be rederivcd directly from the llamiltonian 

K = hwfatftf 4-1Jwsagas <• *wLaJaL - (11iVaL«f as f cc)    . (3.1) 

Proceeding as in the case of magnons in the previous section, the Heisenberg equa- 

tions of motion give 

aaf 

c^S 

öt 

lWfaf - VaLas - yraf 

t öas 
iwsas- VaLaf " cs TIT 

(3.2) 

(3. 3) 

hi 
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5a 1, 
aa 

oi 
l«LaL  f V   afaS -CL -^ 

1. (3.4) 

.M 
where the phonon velocIU' was neglected in (3. 2) as usual       and the damping term 

- ^Fa, and the propagation terms -csöas/ax and -cl aaL/öx were added plie- 

nomenologically. (Considering the time derivatives in the Ileiscnherg equations to he 

total derivatives, that is (d/dt)     » ö/at + c~h/hx for example, would give the cs a 

cs and c,   terms in (3.3) and (3.4) directly.) 

Converting these equations (3.2)-(3.4), which are identical to the classical 

equations discussed above, to number-operator equations by using anf/<Jt 

= afaaf/at + cc, etc.  gives 

on, 
—i =   F - r(n   - nf ) 
at f     f 

(3. 5) 

ang 
at 

-   F 

an L 

ang 
:s ax 

o n. 

at 
-F - c L ax 

a i SU   -   2| V|    [nL(nf+ns+ D - nsnf |- yTF 
a t 

F   =  Va.alag  + cc 

(3.6) 

(3.7) 

(3.8) 

(3. 9) 

Equation (3.8) was obtained by substituting (3.2)-(3. 4) into a 1' /at 

= V(aaL/at)aJaJ+ VaL(aa|/8t) a^ t VaLa|aa^/at   ) cc.   Iheter.n 

Vc   (a   /ox) at at ' Vc^a, at d at/Äa H cc vanishes since a Stokes photon is 

created for every laser photon anniliilated and the propagation of the two photons 

hi 
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is the same for cq a: c. .   In (3. S) the term Fii, was added formally to allow 

n, to relax to its thermal equilibrium value nf, rather than to zero,   lliis is 

trivial in the occupation-number equation, but incorporating relaxation to a thermal 

equilibrium value in the amplitude-operator equation (3.2) is quite involved. 

Setting the time derivatives of n-, ns, and F equal to zero gives 

Cs TT   ;4lv|2r"1 [nL(nf + nsf D-r.^ ] (3. 10) 

and 

nR    [ n.  (nf + n^ + 1) - nsn. ]   - (n, - n. )  =   0 (3. 11) 

where nR =   T /4  j V j    .   Neglecting the saturation term nsn. in (3. 11), as was 

done in the previous section, and solving for nf gives 

n. + (nf /nn)(iu+ 1) 
n    =      f    ,    L    f §       . iXU) 

Tlie srturation term has been treated elsewhere. These results (3. 12) and (3. 10) 

with n^n,  neglected give the enhanced stimulated Raman scattering result 

ns  =   (Vl)[exp(ßgnewx)-1] +ns(0)exp3gnewx    , (3^3) 

where ^gnew = (r/cS) ILR<1 ' ILR)"1, with ll*m nL/nK' Th6 reSul,S (3'10)" 
4 

(3.13) are identical to the results derived previously using the golden rule. 
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IV.  LOSS OF ENHANCEMENT IN PREVIOUS ANALYSES 

Previous treatments  '      of stimulated Raman scattering did not yield the 

enhancement obtained in the previous section.    Iliese analyses either specifically 

assumed no increase in the vibrational energy above the thermal equilibri -n value 

or solved equations (3. 2) and (3. 3) or their equivalei.ts by a method equivalent to 

that described below. In the former, (3.12) is replaced by 

n, =   n^     . 

Substituting this expression into (3.10) and solving for ns gives 

,   ^oldx     ,% ns  =   (nf + 1) (e - 1) 

where ßold  =   4lv|2nL/rcs= (r/cs)(nL/nR ). Tins is just the Raman gain 

with no enhancement. 

In the latter previous analyses, the nonlinear equations (3.2) and (3. 3) were 

linearized and decoupled from (3.4) by assuming that b^ in the definition 

- io,'i t 
aL.bLe (4.1) 

is independent of time.   Then substitutng af      bf exp(-icof t) and as = bg exp( icUgt) 

Into (3.2) and the Hermitiat conjugate of (3. 3) gives 

^-vbLb+-yb( H.2) 

^-Vb-b,-«.^ (4-3) ^t L    f        S     ax 
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for the case of resonance, that is  CO.    - cos +  cof .   Setting the time derivatives 

equal to zero and eliminating bf from the two equations gives 

sf     IvlVS 
which has the solution 

bs(x)  =   bs(0)e (4.4) 

2 
where  ß -   | V ]     n./cgy, which shows no gain enhancement. 

In order to further show how the assumption (4.1) causes the loss of en- 

hancement, (4.2) and (4.3) with b.   independent of time will be solved hv 

another method, in direct analogy with the solution of Sec. Ill where the time 

dependence of b.   was retained.   By the same method used in Sec. Ill, (4.2) 

and (4. 3) give 

9nf 

TT=r-rnf (4..) 

ö nc 5 n^ 

|I  =  2|V|2„L(nf+„s+l)-irF-(csVbLbf^|+cc)   . (4.7) 

By neglecting the time dependence of b. , the nonlinear term -2 | V |   n^n- in 

(3. H) is lost and the last term in (4.7), which did not appear in (3.8) is gained. 

'Hie former makes the solution incorrect in the saturation region and the latter 

eliminates the enhancement.   Neglecting the time dependence of h.   is equivalent 

to neglecting the last two terms in Eq. (3.4) for da. /dt.   By neglecting the last 
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term c. aa. /Sx in (3.4), the cancellation of the similar term c-äa^/öx from 

(3. 3) does not occur in the equation for a F /9t; thus, the last term in (4.7) is 

present.   Neglecting the other term v*afas in (3.4) corresponds directly to the 

absence of the term 2 | V |   nc,nf in (4.7).   This discussion indicates that the 

physical significance of the linearization by using (4.1) is that the effect of in- 

creases in the amplitudes a- and a^ on the amplitude a.   is neglected and the 

spatial rate of change of a.   is neglectei while a comparable term of as is re- 

tained. 

The loss of enhancement in (4.5)-(4.7) can be seen by setting the Line 

derivatives equal to zero, öUg/äx  = j3ns, and dbg/ax  =  J ^llS in (4'^H4-7) 

and eliminating F .   This gives 

2 1 V |2 n l (nf fn^     1 ) - ^ ( T + Cg ß ) cs ^ ns  =   0 

cs/3ns   :   rnf    . 

Neglecting 1 with respect to n, (- n^, which is well satisfied, and eliminating n^ 

gives 

2|V|2r"1nL(cs/l+r) - ^ (cs/3 f r)cg/3 =  0   . 

Dividing by   2CS^CS^ * r^ giveS 

ß = 4 | vi2/cgr 

in agreement with (4, 4). 
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D. THEORY OF LASER-MATH RIALS DAMAGE BY ENHANCED 
STIMULATED RAMAN SCATTERING 

M. Sparks 

Xonics,  Incorporated, Van Nuys. California 91406 

An analysis indicates that Raman active crystals fail at inten^ties 

I. which are greater than the enhanced stimulated Raman-scattering 

thro-liold intensity IR by an amount Lj- tha: is generally of the order 

of or less than IR.   A typical value of 1^ at the ruby frequency is a 

few gigawatts per square centimeter, which is less than other intrinsic- 

mechanism thresholds.   At intensities I > IR . the excess intensity 

I - L  is converted into Stokes radiation and phonons in a distance 
R 

i   « d, vhere d is the thermi'l diffusion distance for a 10 nsec 

pulse.   The temperature rise from the rapidly thermalized phonons in 

the volume x < d is sufficient to cause material failure when I > If. 

Stimulated Raman scattering was first observed in 19ö2.    Within the last year 

there has been interest in a parametric instability in the Raman Stokes processes that 

causes a Stokes-intensity gain enhancement. " '   Among the significant consequences 

are the explanation of the previously anomalous nearly discontinuous increase in the 

Stokes intensity L as a function of the laser intensity I.   in the absence of self focus- 

ing and feedback.   It was also mentioned that this eniianced stimulated Raman scatter- 

ing could be an important laser-damage mechanism having a threshold lower than 

those of other well known damage mechanisms. 
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In tht present paper an analysis of the enhanced stimulated Kaman scattering 

shows that Raman active samples fail at intensities If  that are greater than the 

enhanced stimulated Raman scattering threshold intensity IR by an amount I,., 

which is usually   of the order of or less than iR .   Typical values of IR for solids 

are a few gigawatts per square centimeter at the ruby frequency. 

Physically the mechanism for failure is sii.iply that at intensities above the 

threshold the excess intensity above 1R is converted into Stokes radiation in a very 

thin layer of the sample near its surface.  Since one phonon, called an f phonon, is 

created for each Stokes photon created in the Raman process and the phonons rapidly 

thermalize, the temperature in the thin surtace layer increases. 

Hie general steady-state equations are   '' 

dns/dx - Oc/ynR0)[(ns + iif+l)nL-nsnf] (i) 

nf/np -  (y2- l)/r2  -  A/y2 - n (2) 

where tig, n^ , and nf  are the Bosc Hinstein occupation numbers for the Stokes 

photons, laser photons, and fundamental phonons, ß    *  TM/C*» T4 is the linear 

(low intensity) relaxation frequency of the f phonon, c- is the velocity of the Stokes 

wave, nR =  v  nR0, nR() is the threshold value of nj   for enhanced stimulated 

Raman scattering in the absence of phonon instabilities (which make y    > I ),5 

n    is the threshold value of n    for the phonon instability,5 A B n_n,  /n   n,. .. and 
r i ■ 5   L     p   RO 

B = ^nI.' nS^/nR(r   EBtlmatloni of the time constants indicate that the assumption 

that the steady-state results apply is well satisfied. 

'Hie solution to (2) is 

y2- 1   --    J(A+B + 1) ± [1 (AfH.:)2 -H]1/2     . (3) 
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nie inequalities n- «   n    and n,   «   n     are well satisfied in all enses of interest 
•J y) IJ p 

except the case of ultralony;-lifetime phonons in some materials at low temperatures. 

Since ns «  n    is extremely well satisfied (n  /n«, ~ 10 , typically), the approxima- 

tion 

nS <<  nn ( ' ' "S^L^ (4) 

is well satisfied until saturation (n„ ^ n. ) is approached very closelv. When (4) 

is satisfied, then A « B, and (3) gives 

y2- 1   -   ^-(B- 1) +  i-A ± [i (B- I)2 f  iA(B ♦  1)]1/2    . (5) 

The following limiting cases are of interest:  Iror  I -B »  (2A(Bf 1)] '   , (S) and 

(2) give 

2 -1 
7   - 1  _- A/(l - B)   , nf - nsnL(nK() - nj   + ns) '     . (6) 

For B = 1, v2- 1   - A1/2, nf  ar A1/2n   , and for B - 1 » [ 2 A (B + 1)]1/2, (4) 

gives 

2 
7   - 1 a B - 1     , nf at  n      . (7) 

These results show that nf  is small for B < 1 and large for B > 1 , the transi- 

1/2 
tion region being v_ry narrow, of order 2 A ' .  See Fig. 1)1, where in curve (a) the 

ordinate si.ie is such that A is visible. Then n    is far off the scale. In (b) the ordi- 

nate scale is such that n    la visible, 'llien A is indistiniruishable from zero. With 1 
P 

visible on the abscissa scale, the width of the transition region, in which n, increases 

from its small value to n   ,  is too small to be observable. 
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0) 
■Ö 
3 

a 
E 
< 
c 
o 
c 
o 

i   5A J 
<-• c 
E 
(0 

n. 

B 

lig. Dl, Increase in f-phonon-mode occupation nuinbe'- iif with increaoinp 
15 ~ ^nÜ) ' ~ "S^^'KO"   

1,ie two (),"cliliatc «cales for the (a) and (b) curves 
are explained in the text. 
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Hie low-B result (6), which is valid when n... <  »Dni along with the differential 

3 2 equation (1)- gives the previous enhanced stimulated Raman results.'      In this case 

n- incn.-ases exponentially with increasing distance x from the sample surface, with 

-1 -1 -2 the characteristic distance /3    .   Values of ß      range from ~10    to 1cm for typical 

solids and liquids.   These values usually are not sufficiently small to cause sample 

damage; thus the detailed results for this case need not be repeated here. 

1/2 Substituting the high-B results n,  2: n    and y a: B       from (7) into (1) and using 

n,, + 1 « n    gives S p h 

•1/2 / o      vl/2 dns/dx = /JcnpnR0       (n^ - 21^) 

The solution with tlie boundary condition n,, = 0 at x = 0 is 

I I i      r i / x-1/2 a      v2 | nS  '   InL0     j 1 " t1 - np(nLonRo) ^cx]    ] (8) 

According to (8), the value of ns increases from ns = 0 at x = 0 to n«, =  yn^ 

at x = i, where 

i - ("LO-W
172

/^    • (9) 

1/2 llnis solution, which is sketched in I'ig. IV, is valid for B - 1 » f 2 A (B + 1) ] '   , 

or B > 1 approximately.   For example, (8) is valid for n- up •x) one half of the asymp- 

totic value of  2 nU) for nL0 = 2nRn or Up t0 9//10 of InI0 for nIi) "   10 nR0'  For 

greater values of n,,, the increase in n« is much slower.   Consider the case of n. „ 

■ 2nnn illustrated in Fig. D3 as ."n exnmple.   Prom the definition under (2), 

B = 2(1 -n^/jii. .).   For n» < n.„/4, B satisfies B >!, and r\„ increases 

rapidly accrrding to (8).     lor n^ >n.../4, B satisfies B  < 1, and n,. increases 

"2 
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CO c 

a 
E 
< 

I 
TnL0 

Distance x 

i 
I ig. 02. Distance required for n^. to approach its asymptotic value  j ", ,>.   The 

P' 
solution (10) Is valid to the left of 15 ^ i. At x - TA ^ J3"  ln.nnnn) ' /n 1      2  ^c        I-I)   KO 

ns -   0.75(^11^). 
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CO c 

a 
E 
< 

o 
CO 

2nL0 

4nL0 

TO 

nL(r2nR0 

B 

1 

Distance x 

[;ig. D3. Rapid increase of Stokes amplitude iv for x <  .. (i.e.,  I> > 1 ) and slow 

Increase for x > i. (i.e.i B < !). 
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much more slowly according to the previous low-B result.3,2   llius, ns increases to 

the value n^/4 in a distance (0.6i), which is of order £, and thereafter increases 

very slowly. 

For the general case of nR0 = rjUj n with TJ > 1, the vp.lue of B is 

B = T}( 1 - "g/j"^) f1"001 the definition under (2).   Thus B > 1 for ns ^ n,,  , 

where 

nSx B   lnU)(l-^l)     ' <10) 

This result (10) shows that a fraction  j (1 - TJ"   ) of the incident laser radiation is 

converted to Stokes radiation in a distance £    < i.   An expression for £   . which 

is easily obtained from (8), will not be needed since £    <   £ and the thermal dif- 
V 

fusion distance d » £.   The laser amplitude is reduced from n, n to nnn in the 

region x < £   . 
f) 

Since one phonon of energy fju-v is created for each laser photon of energy fia;. 

annihilated, the energy 

C > I At   1(1 -Tj'Swf/u; (11) 

is converted to fundamental phonons (and subsequently 'o heat) in the volume   (Ll 
T? 

where   0.   is the surface area. 

Hie temperature rise AT is obtained from the heat capacity relation e = CVA'i , 

wher^ C is the heat capacity per unit volume.   The volume V is equa^ to iXd, where 

d is the thermal diffusion distance for the usual case of £   « d.   With (11) and 

1 = 1RTJ, where IR   - ficCjCj riR()/V, this ghvs 

AT  =   (I/IR - l)AT2 (12) 
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where 

ATj ■   j IK t   Wj/uiCd (13) 

lliis result is valid for   .7 > 0; that is, I > L •   lor I <  L , A'l   is sufficiently 

small that ^'1   - Ü can be used for the present purpose. See Fig. 1)4. At I - 2 I., , 

AT   -  AT2. 

The thermal diffusion distance d is obtained from the standard relation be- 

Uveen time and diffusion distance 

or 

t    . 4C(r/fK jiulse 

d  =   (TtKt    .     /4C)I/2 

pulse (14) 

where K  is the thermal conductivity.   lor most materials C  s  2|/cm   K.   Ilnis, for 

tDUlM       l() nSeC,   (,4) >?iVeS  li ~   ' ^   ,0r   K        '  W/cniK  ()r  d   '   { ■ ip" for K      1()'' 

W/cmK. 

For Al       A lf, where A I. is the valu" of A i  ;it which the crystal fails, (12) 

Rtvea 

[f      [R '   ' 1     ' 
1/2 1.,   -   2CdATfu.'/u.<ftp     (trKC/tpul-er*ATf«/^ .    (IS) 

lliis central result (15) shows that the failure Intensity lf is greater than the Raman 

instability threshold l.,  by an amount [_, whose value is determined by the frequency, 

pulse lengthi material parameter (C, K, and a;f), aii ' tlv   failure temperature AIf. 

For CaF2, C = 2.71J/cm K, K     O.WW/cmK, u5f    260cm"1, and the melting 

temperature is T     ,        14()()C . A coi ipletc study of failure would be complicated 

and the results would vary from sample to sample and application to application. 
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Laser Intensity I 

1 ig. i)4.  Increase in surface temperature resulting from the enhanced 

stimulated Raman scattering. 
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In order to obtain a rough estimate of the size of 1. , it is assumed that the melting 

of an infinitely thin (negligible heat of fusion) layer of the surfact- constitutes failure. 

Thua AT. = T     ,   -T     .. - 1,4()()K. With these values and i    ,     -  10 nsec at f        melt       ambient pulse 
4      -I the ruby frequency w =   1.44 ■   10   cm    , (IS) give! d   - 0, Hijxm and (14) gives 

[_  =  0.7 GW/cm (16) 

Analysis of the stresses in tlüs case of a two-dimensional (radial and 'xial) tempera- 

ture distribution is complicated jnd beyond the scope of the present paper.   I iowever, 

rough estimates indicate that i'ie sample may fracture before melting, therein lowering 

the value of I.. A detailed s^udy is unwarranted at present in view of the unceriainiv in 

the value of 1,,. In fact, the value of the critical intensity [» is not known for Cal,, and 

in am other materials,   l-'.rthermore, 1 .   <  I,, for most materials. 

In order to obtain a rough estimate of L for use until measurements of 1..  are 

available, a typical value of I GW/cm   will be used,   llien (14) and (15) give for Cal-^ 

2 
If 9  1.7GW/cm (17) 

l"or diamond, C= 1.56J/cm3K,  K     20W/cmK, uf      1330 cm'1, and   ' melt " 3730C. 
2 

The value of I.,   is approximately I to 4 CW/cm".   I or t    ,      -  10 nsec and u."      1.44 

4       -1 10   cm    , (IS) gives d  = 3.2^m, and (14) gives 

I.j.        4(;W/cni      , If   -  s-s GW/cm      . (In) 

For ZnSe, C = 2.6J/cm3K, K - 0.13 W/cm K, u)f     207 cm" , and A 1^ ,, -  1500 K. 

Ilius (I     0. 2 ^im and 

!_  =   1.1 GW/cm2    . 

Then   if IR  »  1 GW/cm2, If  s 2(',W/cm2. 
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Several addit onal comments are of interest.   First recall that rocksalt-structure 

crystals such as NaCl are not Raman active (first order),    llius the enhanced stimu- 

lated Raman scattering process should not limit the value ot L in these crystals. Most 

other crystals of current interest are Raman active.   Macroscopic Raman-active im- 

purities in rocksalt-structure crystals could of course lower the damage threshold. 

2 
Conversion of the Stokjs radia.ion S to second Stokes radiation S , conversion of 

2        3 
S   to S , and so forth, could cause additional heating of the crystal.   However, these 

subsequent conversion processes are not usually important si.xe the inequality 

L < Ij^  usually is satisfied; i.e., the threshold for conversion from S to S   is not 

reached.   This !■ beceuee the inequality L.. <  I.,  usually is satisfied.   However, the 

value of I~. could be great for materials with large values of K and small values of 

u;f, as seen in (15), 

iiiermally induced optical distortion    is negligible in general because d is so 

small.    Ibe optical distortion is determined by the average over the sample thickness 

of the temperature rise on the optical axis of the window.   I or example, for a 1 cm- 

thick sample of ZnSe with d ■ 0.2||in and AT -   1S00K, the average value of the 

temperature rise is  ISOO (2/10     cm/1 cm) ■ 0. 03 K , which causes negligible opti- 

9 
cal distortion.     I inally, the relatively small temperature variation of C an'"  .v, 

which were neglected, could be included if greater accuracy is required at a later 

date. 
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Abstract 

We derive expressions for the rate at which radiation is 

scattered and absorbed because of surface roughness on a semi- 

infinite material, in the presence of a dielectvic overlayer.  We 

confine our attention to the case of normal incidence.  A formalism 

developed in an earlier paper by the present authors is utilized 

In the discussion.  We also present a series of numerical calculations 

which explore the roughness-induced scattering and absorption of 

electromagnetic radiation for aluminum overcoated by aluminum oxide, 

in the ultraviolet region of the Bpectrtw.  The position of the 

reflectivity d.r produced by roughness induced coupling to the sur- 

face plasmon is found to shift toward the visible as the thickness 

of the oxide layer increases.   The size of the dip is controlled 

strongly by the degree of correlation betw-en the roughness on the 

vacuum-oxide interface, and that on the oxide-substrate interface. 

Under conditions discussed in the text of the paper, the presence 

of the oxide layer can greatly enhance the coupling between the 

incident radiation and surface plasmons. 

B2 
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I.   Introduction 

In the presence of roughness on the surface of a material, 

light incident on the substance may be scattered away from the 

specular direction, and roughness-induced absorption 

can occur.  Both effects reduce the reflectivity of the material 

below the intrinsic value expected for a semi-infinite sample with 

perfectly smooth surface.  The effect is particularly severe for 

aluminum in the ultra-violet region of the spectrum, since in the 

presence of surface roughness, the incident light may couple to 

the surface plasmon with remarkable efficiency. 

There has been renewed interest in this problem recently, in 

part because of the need for highly reflecting mirror -iaterruls 

for use in the construction of cavities for lasers whi:h operate 

in the ultra-violet region of the spectrum.  While aluminum has the 

highest intrinsic reflectivity of any material in the near ultra- 

violet, roughness-induced coupling of the incident radiation to 

surface plasmons can decrease its reflectivity significantly, unless 

"supersmooth" surfac s are prepared. 

Another method that has proved useful in increasing the reflec- 

tivity of aluminum films is to overcoat them «ich a dielectric layer 

after a very smooth "bare" aluminum surface has been prepared. Such 

an overlayer will also be present anytime the aluminum has been 

exposed to an atmosphere that permits oxidation of th? surface. 

One is then led to inquire about the effect of such a dielectric 

layer on the surface roughness induced coupling to surface plasmons. 

While this is a topic that i as been explored experimentally'2^»^>^ 

we know of no theoretical treatment of the effect of a dielectric 

overlayer on the roughness induced scattering and absorption of light. 
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There seems a critica1 need for such a theoreti al ana1ysisl 

In our view.  From simple considerations, one experts that a die- 

lectric overlaycr on a metal such as aluminum will shift the re- 

flectivity dip (produced by the roughness induced coup7ing to sur- 

face plasmons) toward the visible.  One would like to calculate the 

Magnitude of this shift for an overlayer of given thickness, and 

a specified configuration of surface roughness.  Perhaps more impor- 

tant to understand is the relationship of the magnitude of the dip 

to the nature of the roughness on the overlaye r-subs träte and ovei'- 

layer-vacuum interlaces. 

The purpose of this paper is to present such a thoory by 

(5) extending our earlier treatment "  of the surface roughness induced 

absorption and scattering of electromagnetic radiation to the case 

where a dielectric overlaye" is present on the surface of the material 

of interest.  In the interest of simplicity, we confine our attention 

here to the case where the radiation is normally incident on the 

surface.  For this case, we obtain formulas for the angular distri- 

bution and polarization of the radiation scattered from the rough 

surface into the vacuum above the material, for the fraction of the 

incident radiation flux absorbed within the film, and the fraction 

of tho incident radiation flux absorbed by the suustrate material. 

The treatment is valid in the limit that the amplitude of the 

surface roughness is very small. 

We also present a series of numerical studies of tho absorption 

and scattering of radiation in the near ultraviolet (5-12eV) by 

an oxidized surface of aluminum.  We find here that the magnitude 

of the reflectivity dip produced by roughness induced coupling of 

M 
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the incident radiation to surface plasmons depends very dramatxcally 

on the manner in which the roughness ox    the vacuum-oxide overlayer 

is correlated with that on the ox.Je-substrate interface. 

Before we proceed with the detailed discussion, we elaborate 

on this remark a bit.  Consider a smooth oxide-vacuum interface 

parallel to the x-y plane located at the position z - d, while the 

smooth oxide-substrate interface is also parallel to the xy plane 

*t z = o.  No«' roughen each interlace, where C.U.y) measures the 

position ol the oxide-vacuum interface at the point x,y above the 

plane z - d.  Similarly, ^^^ denotes the position of a point 

on the rougher.-d oxide-substrate interface above the plane z - o. 

Then if we denote averages over a given interface by angular brackets, 

we presume  C^   'j^ - o.  In our numerical calculations, we ex- 

amine the following four situations, illustrated schematically in 

Figure (1): 

(1)  C|(x»y)   C2(
x.y) everywhere.  We refer to this as the re- 

plicating film model (Figure 1(a)), 

(ii)  C^Xf^   - C2(x'y) everywhere.  We caU this the non-uniform 

film model.  (Figure 1(b)).  This might be a crude description 

of a lumpy oxide overlayer, 

2      2 
(ill)  <C1)   (^2), but C1(x,y) and C2

(x»y> vcry randomly with respect 

to each other, so the cross correlation function (CiCo^ vanishes 

everywhere.  Wo call this the random roughness model (Figure 1(c)) 

(lv)  ^2 - 0 but Ci y 0. i.e. the oxide-substrate interface is per- 

fectly smooth, but the surface of the oxide is rough.  We refer 

to this as the rough oxide layer model (Figure Id),  It serves 

as a model of a supcrsmooth aluminum surface overcoatcd with 

a non-uniform oxide film. 

s.s 
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the incident radiation to surface plasmons depends very dramatically 

on the manner in which the roughness on the vacuum-oxide overlayer 

Is correlated with that on the oxide-substrate interface. 

Before we proceed with the detailed discussion, we elaborate 

on this remark a bit.  Consider a smooth oxide-vacuum interface 

parallel to the x-y plane located at the position z = d, while the 

smooth oxide-sabstrate interface is also parallel to the xy plane 

at z = o.  Now roughen each j- erface, where C]/X>y) measures the 

position of the oxide-vacuum interface at the point x,y above the 

plane z - d.  Similarly, CQ^»^ denotes the position of a point 

on the roughened oxide-substrate interface above the plane z - o. 

Then if we denote averages over a given interface by angular brackets, 

we presume (£,) = (Co^ = ^  In our numerical calculations, we ex- 

amine the following four situations, illustrated schematically in 

Figure (1): 

(1)  Ci(x»y) ■ Cy(x»>) everywhere.  We refer to this as the re- 

plicating film model (Figure 1(a)). 

(ii)  Ci(x>y) = " Co^'y^ everywhere.  We call this the non-uniform 

film model.  (Figure 1(b)).  This might be a crude description 

of a lumpy oxide overlayer. 

(ill)  <C^> = (C2>» but Ci(«»y) an{i C2(x»y) very randomly with respect 

to each other, so thj cross correlation function (CiC2^ vanishes 

everywhere.  We call this the random roughness model (Figure 1(c)) 

(lv) Co - 0 but: Ci ^ 0» i-6- f'he  oxide-substrate interface is per- 

fectly smooth, but the surface of the oxide is rough.  We refer 

to this as the rough oxide layer model (Figure Id).  It serves 

as a model of a supcrsmooth aluminum surface overcoated with 

a non-uniform oxide film. 
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When we compare the results of the calculations for the four 

cases described above, the position of the reflectivity dip is very 

nearly the same for each case, for an overlayer of given thickness. 

However, the magnitude ot the dip differs markedly in each case. 

In case (i), the dip moves to lower photon energies as the oxide 

thickness increases, with no dramatic change in its depth.  In case 

(ii), the dip agr^n moves to lower frequencies, but increases very 

substantially in depth, i.e. the roughness induced coupling of the 

incident photon to the surface plasmon is increased markedly by the 

presence of the overlayer.  In case (iii), there is also considerable 

enhancement of the roughness-induced coupling to the surface plasmon, 

although the enhancement is Mailer than for case (ii).  Finally, 

for case (iv), once the oxide layer becomes sufficiently thick (say 

greater than 50Ä), the coupling between the incident radiation and 

the surface plasmon is greatly decreased. 

The above remarks show that in the presence of an oxide film 

(or a dielectric overlayer); the strength of the roughness-induced 

coupling to the surface plasmon depends very sensitively not only 

on the amplitude of the roughness, but also on the manner in which 

the roughness on the oxide-vacuum interface is correlated with that 

on the oxide-substrate interface.  This is a principal conclusion 

of the present paper. 

The remainder of the paper is organized as follows.  In Section II, 

we sketch the derivation of expressions for the roughness induced 

scattering of normally incident light, along with the roughness 

Induced absorption within the film on the substrate.  The approach 

(5) Is similar to that employed by us earlier   , and although the final 

B6 
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formulae are rather cumbersome for the present case, the presentation 

here is brief.  We then present the results of the numerical cal- 

culations in Section III. 

In an Appendix, we describe certain Green's functions of the 

electromagnetic field oquations, for the present geometry.  These 

Green's function- may be employed in a variety of problems.  For 

example, the limiting form of these Green's functions with retardation 

Ignored have formed the basis of a theory of the inelastic scattering 

(6) 
o^ low energy electrons by electronic excitations in semiconductors. 
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II.  Derivation of the Theoretical Formulas 

The geometry which forms the basis of the present paper is 

illustrated in Figure (2).  In the absence of roughness on the two 

interfaces, the vacuum-overlayer interface is the plane z = d, and 

the overlayer substrate interface the plane z - o.  In the presence 

of roughness, the function C^iX) measures the elevation of point 

(x,y) on the vacuum-overlayer interface relative to the plane z = d. 

Similarly, CoUfl^ describes the elevation of a point on the over- 

layer-substrate interface relative to the plane z = o.  The overlayer 

material is presumed to be described by the Isotropie, complex, 

frequency dependent dielectric constant Z^  while the substrate is 

described by the frequency dependent dielectric constant ^i again 

complex and presumed Isotropie. To study the reflectivity of the 

structure, we look for solutions of Maxwell's equations which vary 

harmonically with time: 

|(xt) = E(x,W)e-iajt   , (II-D 

where the electric field amplitude E(x,co) obeys 

2 
7 x v x |(X,M) - -^ 6{xtw) E(X,UJ) - o.       (II-2) 

c 

For the geometry of Figure (2), for the spatially varying 

dielectric constant we have 

€(x,a!) = e(z-d-C1(x,y)) 

+ €1e(d + c1(
x.y) - z) e (z-c2(x,y)) (11-3) 

+ 62e(C2(x»y> - z)   » 

SH 
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where in Eq. (I1-3), e(x) is the Heaviside step function which 

assumes the value unity when its argument is positive, and vanishes 

when its argument is negative. 

When both Ci^.^ and C2(x»y) are sma11» we expand the right 

hand side of Eq. (II-3) in a Taylor series by means of the well 

known expansion 

e(x + a) - e(x, + a ö(x) + ...  , (II-3) 

where 6(x) is the Dirac delta function.  Then Eq. (II-3) reads 

€(x,tü) - €O(Z,CL0 + A 6(X,Iü) (II-5) 

where 

€ (z,w) - e(z-d) + €1e(d-z)e(z) + 62e(-z)       (ii-6) 

and 

A6(X,OJ) = d^.yXe^DöCz-d) + (eg-e^Cg^ymz) . (ii-7) 

Then Eq. (11-2) may be arranged to read 

2 2 
V x v x i(x.w) - 4 60(z,aj) 1(5,«) - ^ A €(X,«) E(x,co) .   (II-8) 

c c 

To solve Eq. (II-8) in the limit C^.y) and C2(x'y) are sma11. 

(5) 
we follow the approach used in our preceding paper.     We introduce 

a set of Green's functions D  (x x',tü) which satisfy 

S {4 €0(..»)»x, - -gjjr + »x,. '2} V(i; ''^ 
H    c r X    n 

(II-9) 

- 4n 6X 6(x - x')  , 

along with boundary conditions appropriate to the present scatter- 

ing problem. 
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In terras of  tliese Green's  functions,   we may  rewrite Eq.   (11-8) 

In   integral form 

E^Cx.w)   -  E^o)(x,a:) 
(11-10) 

. -iiLj Z   /dV D    («»s^iiOAC (x'.w) E^ (x',aj) 

In Eq. (11-10), E(o)(x,a;) is a solution of Eq. (II-8) with 

A€ (x,^) = o.  The formal structure of Eq. (11-10) is identical to 

Schrödinger's equation of quantum mechanics, when it is written 

f 7) -* in integral form.    For small A€ (X,Cü), we may generate an approxi- 

mation analogous to the first Born approximation of quantum mechanics 

by iterating Eq. (11-10), and approximating the amplitude of the 

scattered wave E   (x,a;) by retaining the first term.  This gives 

E(s)(x,W) --«-tZ: /d3x' D . (x.x ';w)At (x'^OE^^x'.u;). (11-11) 
M 4nc    V J P M 

The electric field amplitude E   (X,ü,') which appears in the 

right hand side of Eq. (11-11) is the electric field associated 

with the incident field, in the absence of surface roughness.  The 

Green's functions D  (x x ',0;) are constructed in the Appendix of 

the present paper.  Thus, it is a straightforward, (but algebrai- 

cally complex) mattfci to evaluate the scattered fields in the 

vacuum, within the overlayer, or within the substrate.  We call 

the reader's attention to the rather extensive discussions in 

Reference (5), which exploie a number of issues we do not examine 

here. 

As before, since the dielectric function € (z,a;) which appears 1 o 

on the left hand side of Eq. (II-9) depends on z only, ?nd not on 
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z and y, one may represent the Green's function by the partial 

Fourier decomposition 

Dim (xx ',W) - f^L e1 ^-^"-^l^d^dcuwlzz').  (11-12) 

We also write   (where  i -  1 or  2) 

C.Cx.y) - f ^ö ei l|,*, Ci(8|)      • (II-13). 1 j    (2ff)^ 1 

We presume here that the incident electric field is normally 

incident on the structure, with electric field parallel to the x 

axis.  Then we have 

E<o)(x'W) = 6„x I
(0)<•*■')    . (11-14) 

After these forms are substituted into Eq. (11-11), the scattered 

(8) 
field assumes the form 

2 

E^s)(x,aj) = 
" (€r1) „(o),  Jxrj21  i k„.X|| * ,v  v 

2i2v)'ic J 

X d  (KHzd) (11-15) 

2 

 (62qV ■^(«Ö.O)/ d^, e1 KI,SI C2(k||)  d  (klta;|zo) . 
2(27r)3c2        j 2^" 

Fran the discussion in the Appendix, the functions d  OC|W|BS') 

are related to a second set of functions g  (kncülzz') via the 

transformation 

i^oti«!««') - E / B^^ar^s^^ari)^^,«^«!««') , (n-ie) 
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where 
g, - k^ ♦ ky; (11-17) 

»nd the matrix S(ß||) is given by 

kx ky  0 

l^ -ir:(-ky kx   0 1 (II-18) 
y  x 

o  o  k || / . 

One then has the relations 

k2 k2 

d^CkuwIzz') = -^ g^'k^lzz') f -^ gyyCk^Izz') (II-L9a) 
kil kll 

k k 
i    (f|«|M')  = -j1 [•Ä0H«|«»#)  " ßyy'vkliw|zz')] (Il-19b) 

d^Ckii^lzz')  = g gzx(k||W|zz'). (II-19c) 

To proceed, we now need to evaluate the scattered field in 

the three distinct regions of interest: in the vacuum above the 

overlayer, inside the overlayer, and in the substrate. We con- 

sider each regime separately. 

(a) The scattered fields in the vacuum above the overlayer, 

and the angular distribution of the scattered radiation. 

In this regime, we consider the limit z - + », for fixed z . 

Then the Green's functions gxx, gyy and g^ in Eqs. (11-19) have 

the form 

gyjr(k,wiZz') - „-^j  EJ (k,*|» «* (»,«!.') <n-ao.) 

t„*i-l«*') - w^3T Ex »•"I" < (k"^^',     <II-20b) 

«zx«11«"!"'' ■ w^ta E>' <k|,u-'|z) Ex (k,|W|z')        (,,"20c> 

n 
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where for z > d, one Las 

!(k|M|s) ■ E^(k||Uj|z) = e 
ikoz 

and 

with 

k  ik z 
o   o 

ko.(4-^ . 
c 

(II-21a) 

(II-21b) 

(11-22) 

As discussed in the Appendix, the positive square root is to 

be chosen in Eq. (11-22), and if k,, > u/c, we choose 

Im(ko) > o 

The remaining quantities in Eqs. (11-20) and Eqs. (11-21) are de- 

fined in the Appendix. 

The scattered electric field has the form 

E^s)(x,a;) = J d^,, 6 (k,,,^ 
ik-x (11-23) 

where in Eq. (11-23), 

g • ff. + I k, (11-24) 

It is a short exercise to show that the time average of the 

Poynting vector, (S), may bo cast into the form 

/    .2,    J21 /     i(k-k     )'X 
Re /    d^kud^kif e (3> = ö2-- ^ / 8iTüJ        J 

x [E{e*(Kl|u;)-e(iciiu.o} 

-  C(k|| w) (k-e* (k,[(*});] 

(11-25) 
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We are interested here in the energy radiated into the vacuum. 

Thus, we confine our attention to the contributions to the integral 

from the regions k„< uu:,kj< u;/c.  As explained earlier,    the 

regions with k]\>u)/c  describe scattered energy which is confined 

to the near vicinity of the surface, and which propagates parallel 

to it (i.e. stores in surface plasmons excited by the incident 

radiation, for example).  The regions k, > Cü ' c , k{ > u)/ c give 

(5) 
contributions to the energy flux which are small,   unless the 

surface plasmon in mean free path is comparable to the linear 

dimensions of the region illuminated by the incident beam. 

We may calculate the Poynting vector by inserting the amplitudes 

of the scattered fields into (S), and then averaging over the distri- 

bution of surface roughness, as we did before.  The calculation 

proceeds along very similar lines to our earlier work. 

We comment on one point, however.  When one averages over the 

distribution of surface roughness, one encounters averages of the 

form ({(ki:)* t*tii{))   •  T»16 two functions (^(kn)* i^kj)) and 

it   Äl)* to&')y>  describe the nature of the roughness on the vacuum- 

overlayer and overlayer-substrate interfaces, respectively.  In 

general, the "off diagonal" averages (^(kn)  tfCC|)) and 

<t (Si)* t (k')> wiH be also non-zero.  These functions contain 

information about the manner in which the roughness on the vacuum- 

overlayer interface is correlated with that on the overlayer- 

substrate interface.  These functions will vanish only if the 

roughness on the outermost interface is distributed randomly relative 

to that on the innermost interface, a possibility that seems unlikely 

for a thin overlayer. 
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By a straightforward generalization of our earlier definitions, 

we write 

(Ct^nKj^ip) - (2ir)2ö(k:-k;)6i6j g^Uii)  , (11-26) 

where 

I |J«|) --5V l^re'^'*     (Ct^CjCn» •     01-27) 

In Eq. (11-26) and Eq. (11-27), the quantities 61 and 62 are the 

root mean square roughness amplitudes for the vacuum-overlayer 

interface, and the over layer-substrate interface, respectively, i.e. 

2 i 
öj - (q) (II-28a) 

and 

t2  - <C2> (II-28b) 

It follows from this definition that 

fÜbg.tfl) =f A" g2o(k ) - 1, (11-29) J   4* J   4/  M 

while no simple normalization requirement exists for g12(k ) or 

g21(k||), although necessarily g12(k:!) = g21(k|i) . 

The overlayer roughness configurations illustrated in Fig. (1) 

can be seen to correspond to particular choices of «J2^kii) ■ 

For example, the replicating film model of Figure (la) corresponds 

to the choice gii(S|) = g22(k ) = g12(k;), and the non-uniform film 

model of Figure (lb) to the choice gi|(k||) ■ B22(k!!) = - g^^i^' 

With the above remarks and our preceding discussion in hand, 

one may construct expressions for the angular distribution of the 

scattered energy flux.  We shall simply quote the results here, since 

the ilgebrai  manipulations are lengthy and offer no enlightenment. 

^s 



Sec. I 

le let (df /dr.)dr. be the fraction of the incident radiation 
s 

(recall we consider only normal incidence here) scattered into 

final states with s polarization, directed toward the solid angle 

dfl.  In a similar fashion, (df d') describes the angular distri- 

bution of radiation of p polarization.  The direction of the out- 

going radiation is described by the spherical angles 8S and <ps, 

where o  is measured from the x axis. 

Before we write down the final expressions, we define the 

following quantities: 

Kl  - (Cj - sin2es)^  ,  Im«1)> o (II-30a) 

K2  - (€2 - sin
2es)- ,  Im(<2)> o (II-30b) 

d (ec,ü:) = (»Co ♦ cos 0S) cos (f «|*) ■s'^s 

i   2 
-■=—(«,+ K0  cos 0^) sin (^ <,(i) K, ""I T "2 c "V 

(II-30c) 

^(es'w) " COS (f ^l^ " ' K7 
^  sin (f^d) (II-30d) 

dp(es.a) (€2 cos es + K2)  cos (^ ic1d) 

" 1 (cos 0
s
€i^ + ifs) sin ("f'i) 

(II-30e) 

€„  K 
tp(esM  - cos (f Cjd) - 1 3 ^ sin (i K^)  .   (ii.30f) 

'»o 
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We  then have (9) 

8        s u 
2 2 cos   9    sin (p 

»c   |<i,(a,,^r|d (o.^j 

X[6?IV1|2ks(8s,a.|2|es(o>w)|2gll(?(|) (11-31) 

.2,.     ,   ,2 
+  ö2l€2-€irg22(i?l') 

and 

♦ 26,62 Re {(<-!)(c^e^e^Cc^^ce^^g^Ck,,)}] 

dVes^s) w4 cos2escosV|S|2 

«ft 
c     \dp%.^\   \*s(o,u)\ 2 

x[6?IV1l2|ep(es,«J|
2l.s(o,.)|2g11(kll) (11-32) 

.2,,      .   ,2 
+   52lV€irg22^ll> 

♦ 26,62 Re {^) ^2-h)^o^)^Qs,^12^)}] 

In Eq. (11-31) and Eq, (11-32), k,, is the projection of the 

wave vector of the scattered wave vector on a plane parallel to 

the surface.  Thus, the magnitude of k,, is given by 

|*i I = f sin es (IT-33) 

(b)  The scattered electric fields within the overlayer, and 

the fraction of the incident energy absorbed within 

the overlayer. 
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To compute the scattered electric field within the film, we 

may use Eq. (11-15), with the Green's functions d  (k||a;|zd) and 

d  (itjicolzo) given by Eq. (11-19). 
^ 

If we define (as in the Appendix) 

2        | 
kI = (^ €1 " k")  '   Im (kl) < 0  ' 

(11-34) 

then the electric field within the film has the form 

+ ik,z -ik,z. 
E(s)(x|W) = J Aum***-**^^,^  X  1 -H C^^l,«)«   1 }•  (11-35) 

where after some algebra,   one  finds 

i0)(titU>  = 2-5- E(o)(a),d)e    0   C^n) "5—5 

x \ a 
k k^k2 

o  1  x 

ff|(k|t(i>)k| 
C " '   t 

(l) 

k,|2wx(k|,|W)    a 

uUn-ti)        — ' ( k^k"k 

_§^:E(o)(.,o)a2(kll) ia :1^   ■ 
(2ff)    c - (     k,,   w,, uii,to) 

A (ll) 

(11-36) 

k2 

^  ^ 
k||Wi(k|t,a)) 

eia)(S|fw) W- E(o)(W,d)e     0   dCk,,)  -^ 
y (2IT)  C k|| 

x \ a -TT 
kokl  r(!|) 1 r(x)) 

u?w  ^        ^    cr      " W1(k1|,aj)    a k|l| (kl,») ■L    "' J 
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 75—75— E      (cü,o;Co^kii'      5^ 
(2ff)iJc<d kl 

(11-37) 

klk2 
x {a —5  "_ 

k^Wn (k|,,cü) 

dl) 
Wx(k||tw)    a 

(x)) 

eia>(ßi.«) - 
w ^r15   (o)        lkod* ,c .    kokx     rc> 
i2tr)^2' 

uj^CCo-e,) 

,ci)e Cx^ll)-? kf^j (k|,«) 
(11-38) 

2"cl'   ..(o) *   .-* kxk2 A(li) 

(2ir) 
5-4- Eko;(co,o)C2(kii) -j—; /0 
2c^ 2 k|W|j(k|tM)  " 

In Eq.   (11-36),   Eq.   (11-37)   and Eq.   (11-38),   we  have  as  in 

the Appendix, 

(^  62 -  k^     Im(k2)   < 0 

I 
ko "  (^ " k')    Im(ko)  * 0 

The coefficients C^        ,  C^x),   etc.   are given by 

k« 

k  _.    ik d    -iak^ 

^ -»[l + • sf] • 0 •    ' 
, x , k  .,    ik d    -iak^ 

(11-39) 

(11-40) 

(II-41a) 

(II-41b) 

(II-41c) 

(II-41d) 
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It is now a straightforward, but tedious matter to evaluate 

the traction of the incident radiation absorbed by the overlayer. 

By symmetry, the only component of the Poynting vector which has 

a non-vanishing value is the z component, <Sz> .  The rate at which 

energy is dissipated in the film is then L L  ] <S >    - /S >   J. 
• # *■    z=o  N z z=d 

where L L is the area illuminated by the incident bean.  We calculate 
x y 

this quantity, and divide by rale at which incident energy strikes 

the surface to form an expression for the fraction f   of the 

incident energy absorbed by the overlayer.  The quantity f   has 

the form 

,(1) 

(r=±l a^ti 

.(I) (11-42) 

where 

f(l) cc 
—2 5 
4ir c jd (o,tü) j 

Re 

s 

Id k||a-e ) 

x laJlCi^lV^o.aOl'giCßi) > 

//    a    c2 ikj^kj^i^Ap   c*2        k^ 
I a cos (p -^ ■ -2  T 

+ a "? 
\      s a;2   |dp(klf«jr      ^i     ki 

€2    ko 
"T + a k" fel   Ki 

. 2  w + a sm (ps -^ 
c  |d (kii.a))! 

i + «'-? 
ki 

1 + a k~ Ki 

2      2    -   -iCakj-akj^d 
+ 62|€2-€1I  g22(

kll) e 

2 . 2 »N 
,   2  c 

x i a cos o^ —2 
U3 

2 Ik^^k^k^^k* 

IdpCkH.a;)! 
+ a 

_o 
+ a 
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2       (J 
+ a sin (ps -^ 

c     |d_(kB,w)| kiJ 

k   -i 
1 + a^ 

Kl 

♦ ♦ -iak^d 
+  61ö2(€2-€1)(€1-l)   C   (o,'x')  e g12(kll) 

(" 

2       c2 ko(kllkl|2+ k"kt)k2 
cos  ^s ~5 ~ 

|dD(kl,,a3)r 

♦ , ♦ 

— +  a    — 

L6l kl 

1 o 
?~ + a k" fc1 K1 

+ a sin <ps -g 
2 k, 

2       to 1 

c     |ds(k|,,aj)| 
2   fl^'^l1 

k
l 

k    i 
1 + a T— 

Kl 

♦       * 
+  o1ö2(€2-61)(€1-l)   es   (o,a))  e 1    g12   (kn) 

(- 

2       c2 ko(kllkl|2+ k?kt)k2 
cos   g    -R  ^ 2  

s ^     |d (kj.adr 

k!ir€ 

.6i U 

2 "2 
?~ +  a  k~ fcl Kl 

o        2        k, 
2      a? 1  + a sin $   -*  

s cz   |d,(k|,«)| 

In Eq.   (11-42),   we  have 

5[-^][-^] I 

k_ k. 
dgCkn.o;)   =   (k0-k2)  cos   (k^)  -iU^ -f—^] "i»^«!),   (11-43) 

and 

d   (k||,w)  =   (€2ko-k2)  cos 
/6^-k, k„ k   \ 

(11-44) 

The definitions of   the  remaining quantities may be  found earlier 

in  the present  section. 

(c)     The  scattered electric   fields within   the substrate, 

and the  fraction of   the  incident energy absorbed within 

the substrate. 
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We evaluate the scattered electric field within the substrate 

through the use once again of Eq. (11-15) in concert with Eqs. (11-19) 

Now we require the Green's functions for z < o, z < z'.  In this 

regime we have 

g ̂x <kii"lzz/) = wüWT^T Ex (kllWlz) Ex (k"wlz/) (II-45a) 

•yy 
(ki'wlzz/)  =  nlfa   Ey   (k!ltülz)   Ey   (kilwlz#) (II-45b) 

and 

g^CkHzz')   =  frfea   E^   OM«!«)   EX   <k^iz/>     • (II-45C) »zx 

where 

E^ (k||w|z) = 
kg ik2z 

kll e 
(II-46a) 

and 

Ey (k||üj|z) = e 
ik2z 

E^ (k||a;|z) = e 
ik2z 

(II-46b) 

(II-46c) 

The scattered field in the substrate then assumes the form 

„(s),- x   r ^2.  ik|rx|,ik2z fti2)(S,«) E       (x,to)  =      d k||e     "     "e p u J 

(11-47) 

(2)   r? where   the explicit  form of   the  quantities  e       (k||,w)   is 

Ci2)(k||.ü;)  = +  i-2- E^0,(u;,d)i:   (k,,) 
x (2ir)  c^ 

(II-48a) 

x :     3     X     2 E^(k,tcc|d)  - 
k2 > )  X 5 Ej(k|,a)|d) I 

W1(k1,,aj)k|,     y j 
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+     ö-?--  E        (tü»0)C2(kll>     —5 2      
(2ir)2c2 

(2ff)    C 

k k 
(k,,) ^ 

kii 
(II-48b) 

J kgE^kuwld) 
IknWuCkn.uj) 

Ey(k||Co|d) [ 

Wx(k|,,a;) 1 

<^(€2-£l)      (o) A kxkv 

(2ir)\2 
2v»M, 2 

k2Ex(k|,coIo) v 
x< kdWuCk^u;)      +    W  (k||,ü;) 

S   (knwio)) 

(«A «i.   ^fCii.co),  d * fS , kxE^k^ld> 

^<V€1>   .(O). ', ff  ,   kxEx(k"^lo) 

(>y)ica   E    (^0)C2(ki-> kuw^k,,.^ 

(II-48c) 

In reference (5), it was argued that in the limit that the 

mean free path of the surface plasmon is short compared to the 

linear size of the region of the surface illuminated by the incident 

beam, then the dominant contribution to the energy absorption by 

the substrate comes from the energy flow in the direction normal 

, where again to the surface.  This rate is equal to L L  <S > 
Ay    2 
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L L is the area of the surface illuminated by the incident beam, 
x y 

It is  straightforward to compute this quantity, and divide it 

by the energy/unit time that strikes the surface to obtain the 

(21 
fraction f   of the incident energy absorbed within the substrate. 

When this is done, we find the following expression: 

(2)   w 

t c |d (O,Cü) 
Jd2k|, |Re(k2) 

x Jcos2^ ^5 
lkol2o^ ♦ |k2!

2) 

idp(k||,u;)|
2 

[ejM^i^le.Co.ftdl^cfii) 

2ö162Re([€*-l][(E2-€1] C* (O.OJ) CpCk,, ,aj)g12(klt)) 

+ öalV^I2!^^!"^'2 g22(i'l|)] (11-49) 

2  a? + sin ,ps -^ 
c  |d (kit',«)! 

6? IV1!2!^0»^!2 ßii(^) 

♦ 62l62-€1!
2|€s(kll.u;)|2g22(kll)]    . 

In Eq. (11-49), we have introduced the quantities 

k 
€c(k,|(o) = cos(k,d) - i T^ sin(k,d) (11-50) s Kj 

kl 
€„(k||6ü) - cosCk.d) - i ^-i- sin(k,d)   .   (11-51) 
p ^1 o 
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III. Numerical Calculations 

In this section, we present the results of a set of numerical 

calculations of the change in reflectivity of the structure, in 

the presence of surface roughness. 

To carry out these calculations, we require values of the com- 

plex dielectric constant €, of the overlayer, and the complex 

dielectric constant €„ of the substrate.  We have chosen to carry 

out the calculations for aluminum metal overcoated with an oxide 

film.  For the dielectric constant of the overlayer, we have 

employed the dielectric constant of A^203 films reported by Arakawa 

and Williams .     This data shows that the dielectric constant 

of A-tgOo is real below photon energies of « 8 eV, and absorption 

sets in for photon energies higher than this value.  For the dielectric 

constant €„ of the substrate, we have employed the values for 

aluminum reported by Ehrenreich, Philipp and Segall. 

We also require values for the correlation functions g,,(k), 

gnotkii) and g,2(k).  We shall restrict our attention to the four 

■odel situations depicted in Figure (1).  In each case, •?. simple 

relation exists between the three correlation functions, so we 

only need specify one of them to proceed.  The relations are as 

follows: 

(i)  The replicating film model (Figure 1(a)). 

Here we have Ci(x»y) = Co^»^ everywhere so that 

gn^n) = ß22(^ll) = ß12
(^ll) (III-l) 

and also 

«! = 62  . (III-2) 
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(li) The non-uniform film model (Figure 1(b)). 

Bere we have CjCXfY) " - CiCx»y) everywhere.  Then 

tUdl|) - 822(^l|) = " 8i2(^l|) (III-3) 

and again 

*l " ^2    ' (III-4) 

(iii) The random roughness model (Figure 1(c)). 

In this model, we presume  that the roughness on 

the vacuum-oxide interface is uncorrelated with that 

on the oxide-substräte interface.  This means that 

g12(k||) - o   , (III-5) 

while g,,(k||) and g22(k||) bear no simple relation to 

each other, in general.  For simplicity, however, we 

shall choose 

g11(k|,) = g22(k||) and (III-6) 

«! ■ ö2 (III-7) 

for this model, while the condition in Eq. (IV-5) holds 

also, 

(iv) The rough oxide layer model.  We presvme the oxide-sub- 

strate interface ib perfectly smooth, while the interface 

between the oxide film and the vacuum is rough.  This 

means that Co(xiy) = 0 everywhere, so we have the 

conditions 

g22(k||) - g12(k||) - o (III-8) 

Ku(it|) t  o. (III-9) 
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Each of the four models described above requires knowledge 

of one correlation function gj^Ckn), and the remaining correlation 

functions may be obtained from it.  As in our earlier calculations, 

we choose a gaussian for gj^fku): 

Enten) - ffa2exp[-i a2k?] (111-10) 

The parameter a is the transverse correlation length.  It is a 

measure of the average distance between neighboring peaks on the 

rough surface. 

To  begin, we calculate the change in reflectivity for a rough 

surface of pure aluminum, with no oxide overlayer present.  While 

we presented similar calculations in our earlier work, in the pre- 

sent calculation we have chosen a value for the transverse correla- 

tion length which provides a rough fit to the data reported by 

Endriz and Spicer.     These authors have completed an extensive 

series of experimental studies of the effect of roughness on the 

reflectivity of aluminum in the ultra violet. 

In their paper, Endriz and Spicer have also provided detailed 

fits to their data.  However, in their fitting procedure, they 

employed theoretical expressions which have appeared in the literature, 

but which are in error.   '     In our present calculations, we 

have not attempted to obtain the kind of detailed quantitative fit 

to the data attempred by Endriz and Spicer.  Our interest here is 

in a calculation which provides a reasonable qualitative fit. 

We find that if we choose the transverse correlation length 

a ■ 200A, we obtain results rather similar to th^ experimental data. 

In Figure (3), we present our results, for the case where the root 

(13) 
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■ean square height of the roughness (the parameter 6) is chosen 

to be ISi.  The dominant contribution to the roughness-ina-iced 

change in reflectivity comes from roughness induced coupling to 

the surface plasmon.  In aluminum, the surface plasmon energy is 

10.6 eV, and one sees that the minimum in the dip in the reflectivity 

occurs near, but below this energy. 

We would like to comment on one feature of our calculation, 
^(12),(15) 

for pure aluminum.  In the literature, it is frequently presumed 

that for frequencies above the surface plasmon energy, there is no 

roughness-induced absorption by the substrate, and as a consequence 

the roughness-induced change rn reflectivity has its origin entirely 

in the scattering of the incident light away from the specular 

(5) 
direction.  As we pointed out earlier,    since the imaginary part 

of the dielectric constant of the substxate is non-zero, there is 

roughness-induced absorption present at all frequencies, even above 

the surface plasmon frequency.  For the parameters chosen to describe 

pure aluminum, even at 12eV we find the dominant contribution to 

the roughness induced change in reflectivity comes not from rough- 

ness induced-scattering away from the specular direction, but rather 

from absorption in the substrate.  In the calculations reported 

in the paper by Endriz and Spicer, the roughness Induced scattering 

rate was found to be considerably larger than that we calculate 

here.  These authors used a considerably larger value of the correla- 

tion -ongth U lOOOA) than wc have.  We find that for larger values 

of the correlation length, our calculated scattering rate increases 

appreciably, but we can no longer obtain a reasonable fit to the 

reflectivity change produced by roughness at lower energies where 

the surface plasmon-induced dip occurs. 
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In Figure (4), we present our calculations of the roughness- 

induced change in reflectivity for the replicating film model 

described above.  One sees that as the thickness of the oxide 

layer increases, the reflectivity dip shifts toward the visible. 

The reason for the shift is that the presence of the oxide layer 

lodifies the dispersion relation of the surface plasmon 
(16) In 

particular, for a metal with bulk plasma frequency u; , in the limit 

that the vave vector k  - «, the surface plasmon frequency for a 

metallic substrate overcoated with a dielectric layer with dielectric 

constant € approaches the value u; /(!+€)" rather than the value 

U3 / V5" associated with the metal-v.. ruum interface.  We would then 

expect that for large values of the overlayer thickness d, the re- 

flectivity dip to shift downward in frequency to lie just below 

Cü/(1+0 .  If we choose € == 4 as a typical value for At203 in the 

frequency range of interest, then /J /(l+€)z ■ 6.7eV.  Thus, by the 

time the thickness of the oxide layer reaches 100Ä, the calculations 

show that the reflectivity dip lies near this asymptotic value. 

Note that for the replicating film model, the magnitude of the 

dip is not affected by the presence of the overlayer in any dramatic 

Banner. 

In Figure (5), we present calculations of the roughness-induced 

change in reflectivity for the non-uniform film model described 

earlier, and illustrated in Figure Kb).  While the position of the 

■inimum in the reflectivity for each value of the oxide thickness 

coincides quite closely with the minima displayed in Figure (4) 

for the replicating film model, the most striking feature of the 

results in Figure (5) is the very substantial enhancement of the 
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strength of the coupling between the light and the surface plasmon. 

Note that in the calculations illustrate'! in Figure (5), we have 

reduced the rms height of the roughness on each interface from 

the value 12Ä used in Fijure (3) and Figure (4) to the smaller 

▼al  of 6A.  Also, note the difference in the scale used on the 

Ordinate in Figure (4) and Figure (5). 

At this point, we may appreciate that the positron of the re- 

flectivity minimum is controlled simply by the film thickness, 

but the strength of the interaction between the incident wave and 

the surface plasmon is a very sensitive function of the nature of 

the correlation between the surface roughness on the oxide-vacuum 

interface, and that on the oxide-substrate interface.  The reason 

for this is the following, if we compare the results in Figure (4) 

and Figure (5).  When ^«»7) = - C2(x»y>» as in the non-uniform 

film model, the scattered electromagnetic wave from the oxide- 

vacuum interface interferes constructively within the oxide film 

with that which comes from the oxide-substrate interface.  This 

greatly enhances the coupling between the incident radiation and 

the surface plasmon.  Note that in Figure (5), coupling to the sur- 

face plasmon is strongest when d = 20A.  On the same curve, one 

sees an appreciable change in reflectivity above 9eV, well above 

the surface plasmon-induced reflectivity dip.  The large roughness 

induced change in the reflectivity above 9eV comes from energy 

dissipation within the oxide layer; recall that one is past the 

absorption edge of the oxide film in this energy range.  The con- 

structive interference which produces sLron»; cciplin- to the surface 

plasmon thus also leads to considerable absorption within the oxide 

film in the energy region above its absorption edge.  We shall see 

III) 
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that  in  the random roughness model,   where  there  is no correlation 

between  the  roughness on each  interface   (and hence no constructive 

Interference of  the  type jus:  described),   in the presence  of   the 

oxide overlayer,   the roughness   induced coupling of  the   incident 

radiation  to  the  surface  plasmon   is  still considerably enhanced 

over the  value for  the  pure  aluminum surface,   although  the  magnitude 

of  the enhancement  is smaller  than  for  the non-uniform  film model. 

This means   that  in the  replicating  film model,   the  two  scattered 

fields evidently interfere destructively, and the enhancement   effect 

provided by  the oxide film  is suppressed  as a consequence. 

In Figure   (6),  we present   the  results of our calculations  for 

the random  roughness model   (Figure   1(c)).     Again  the  position of 

the minimum  in  the change  in reflectivity occurs at  the  same  photon 

energy as  for  the replicating  film model.     The strength of  coupling 

between  the   incident  radiation and  the  surface plasmon  is  signifi- 

cantly  larger  than  is  the case  for  the pure aluminum surface,   al- 

though   the  enhancement  factor  is  considerably smaller   in  each  case 

than for  the  non-uniform film model   in Figure   (5). 

In Figure   (7),  we display   the  results of  the calculations  for 

the rough oxide  layer model.     As  remarked earlier,  we  assume  here 

that  the  oxide-substrate  interface   is  perfectly smooth,   but  roughness 

is present  on  the oxide-vacuum  interface.     For small  values  of  the 

oxide   layer  thickness,   the  interaction  between the  incident   radiation 

ftnd  the  surface  plasmon  is enhanced,   as  in the other  two  examples 

wheie destructive  interference  does  not occur between   the scattered 

fields  generated by  the pair  of  rough   interfaces.     However,   as  the 

oxide  layer  thickness  increases,   the  strength of  the effective 
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coupling eventually begins to decrease.  Quite clearly this occurs 

because the fields associated with the surface plasmon are localized 

to the inner interface, and as the oxide layer thickness increases, 

the rough surface responsible for the reflectivity dip moves suffi- 

ciently far from the inner interface to cut off the coupling be- 

tween the surface plusraons and the incident radiation. 

With the results of the above four cases in hand, we make 

some remarks about the experimental data. 

(15) Feuerbache1- and Steinman    have studied roughness induced 

reflectivity dips for aluminum films, and also for roughened films 

overcoated with 50Ä of LiF.  The position of the reflectivity 

minimum of the roughened aluminum film overcoated with 50Ä of LiF 

agrees quite well with the calculations presented above.  (Of 

course, our calculations were carried out for aluminum overcoated 

with aluminum oxide, but in the spectral regime of interest, both 

LiF and Al-  0^ are transparent, and their dielectric constants do 

not differ greatly.)  If one examines the magnitude of the reflectivity 

dip they observe, then for the roughened film AR...«. * 0.25, while 
MAX 

for the overcoated film, A RMAX m  0.45.  Thus, while the overcoating 

procedure shifts the reflectivity minimum toward the visible, it 

does not greatly affect the strength of the roughness-induced 

coupling of the incident radiation to the surface plasmon.  This 

suggestb that the LiF overlayer has roughness on its outer surface 

which tracks rather closely that on the LiF-substrate interface, as 

in our replicating film model of Figure 1(a). 

(17) 
Stanford and Bennettv   have studied the effect of overcoating 

a roughened Ag surface with films of Al2  03 roughly 250Ä thick. 
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They present several measurements in this paper.  For a supersmooth 

uncoated Ag surface, they find a smooth variation of the reflectivity, 

with no sign of a dip characteristic of roughness induced coupling 

to surface plasmons.  For an uncoated surface they characterize 

as "slightly rough", the measured reflectivity tracks that of the 

supersmooth surface, although a clear hint of a surface plasmon 

dip is present.  The surface plasmon dip appears as a clear feature 

in data on a surface they characterize as "relatively rough."  When 

the slightly rough surface is overcoated with A^2 03, a very large 

pronounced dip appears.  The reflectivity change, only barely 

visible for the uncoated surface, assumes a maximum of « 0.50 for 

the overcoated.  While these measurements are carried out on a rather 

different substrate-overlayer system than that considered here 

(and also in a different '.vavolcngth regime), this data provides a 

clear example of the behavior illustrated in Figure (5) and Figure (6), 

where the overcoating produces an enormous enhancement of the rough- 

ness induced coupling of the incident radiation to the surface plasmon. 

The calculations in Figure (7) suggest that if a suporsrrooth 

aluminum surface is overcoated with a dielectric, then if the 

dielectric layer is sufficiently thick, the reflectivity of the 

structure becomes relatively insensitive to the presence of rough- 

ness on the outer surface of the overlayer.  However, it must be 

kept in mind that as the thickness of the oxide layer increases, 

the reflectivity of the structure drops substantially in the ultra 

Violet even if both interfaces are perfectly smooth, as Ehronrich 

has pointed out recently. (18) We illustrate this in Figure (8), 
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where we present the reflectivity for aluminum overcoated with an 

oxide layer of uniform thickness, for the case where both inter- 

faces are perfectly siaooth.  The dot-dashed curve is the data of 

banning,    which shows a decrease in reflectivity at large photon 

energies of the sort expected for a surface overcoated with an 

oxide film.  Indeed, the data is fit reasonably by the curve for 

d = 20A, for photon energies above 9eV, It is tempting to suggest 

that the measured reflectivity drops below the theoretical curve in 

the re0ion fron 7 to (J eV because of roughness induced coupling to 

surface plasinons. However, it is difficult to see how superposition 

of two distinct mechanisms could produce a curve as smooth and fea- 

tureless as the data of iianning. 
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APPENDIX:     CONSTRUCTION OF  TtlE GREEK'S  FUNCTIONS 

FOR THE  ELECTROMAGNETIC  WAVE  EQUATION 

In Section   II  of   the paper,   we  introduced a set of Green's 

functions  D     (XjX';^)   that satisfy  the differential equations 

$jt5 eo<z.->«X.M 
) 

dx. ox 

(A-l) 

- 4ff 6X  CCx-x') 

along with the outgoing wave boundary conditions appropriate to 

the present scattering problem.  In Eq. (A-l), the dielectric 

function € (z.w) is given by Eq. (II-6). 

In an Appendix of our preceding paper (5) we derived the form 

of these Green's functions for the semi-infinite dielectric, which 

corresponds to the limit d - o in the present geometry.  In our 

preceding paper, we constructed the Green's functions by directly 

solving the differential equation Eq. (A-l).  This procedure becomes 

most cumbersome for the present geometry.  We present here a much 

more compact method of constructing the Green's functions. 

As in the text, we write 

D^CX.X-CO) = [^ .^r(2rSi) d   (kl|W|Z2o 
M" J   (2it)z I* 

and we note   that one may write 

ÖCx-x')   =   6(z -z')f^ 
J (2tr) 

ik, (Xl|-X||) 

(A-2) 

(A-3) 
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With these expressions, one may reaaily derive a set of one 

dimensional, coupied differential equations for the functions 

d ik\\ui\zz').     These equations simplify considerably if we perform 

a coordinate rotation which aligns the x axis with the direction of 

k||.  This is achieved by the action of the matrix 

K   k   o 
x   y 

S (k,,) "^ |-ky  kx  o (A-4) 

II 

We introduce a new set of functions g   /   ,(k\\ui\zz'')  related  to 

d  (kucolzz')   by  the  rotation just  described: 

i^(K|«|«s')  -S ^^»(kiiuls«')  S^^Ck,,)  Su,uikO 
V   V 

(A-5) 

It is a straightforward  matter to construct the equations 

obeyed by the functions g_(k|fi}|sB').  These equations read 

L
2 

dz 
[eo(z,üj) ^ -  k? + -^-j] gyyCkuccIzz'     =  4tr fiCz-z')   , (A-6) 

[€0(.,ad^^]g„(k|W|M') 

-  iki 
dß7X   (kiiwlzz') 'zx 
dz =  4ff6 (z-z') 

(A-7) 

2 
"ik« Ä Bxx(kliw|zz/)   + [€0(z,w) ^ -  k|] g^Ck^Izz')  =  0   ,   (A-8) 

2 2 _ 
[€0(2,W) -^ + ^2] g^CkuwIzz') -  ik^: g^Ckn^lzz') = 0 (A-9) 
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fclk'1 dl  gxi'. (kl«l««') 

2 
(A-10) 

+[€o(z,aj) ^ - k?] g^Cki«!««') = 4ff6 (z-z') 

The remaining functions (gxy, gyx, gyx, gzy) obey homogeneous 

equations, and thus vanish identically. 

We begin with gyy (k|ia;|zz'), since Eq. (A-6) is uncoupled with 

the remaining four equations.  We first observe that for a medium 

characterized by the z dependent dielectric constant € (z,co), 

llaxwell's equations yield solutions of the form 

E(k||w|x) = y E (k|,Wiz)eik,'X    , (A-ll) 

where  I (k|w|s)   obeys   the  homogeneous   version of  Eq.   (A-6): 

|>0(z,w) ^  -   k 
c' 

";  + —j    ■  (k!«!«)   =  0     . 
dz   J    y (A-12) 

There are two linearly independent solutions of the differential 

equation Eq. (A-12).  We denote the two solutions by E>(k||Cü|z), 

and Ey(k||a;|z), where  - choose the functions to satisfy the boundary 

conditions 

lim 
z - + 

^ +ik z 
E^(k|,aj|z) = e   0 

and 
* +ik0z 

lim Ej(k||Cü|z)  = e       Z 

(A-13) 

(A-14) 

where we define   the quantities 

"5 6i,a " k||j   » Im(ki 2) < 0 (A-15) 

,
(üJ+ in)' 2^ kfj       ,   Im(ko)  > o 
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In Eq. (A-15), we presume €, and €„ have a positive, non-zero 

Imaginary part, and for the proper square root to be chosen for k , 

we have added a positive imaginary infinitesimal 177 to the frequency. 

The limit f? -• o is always to be taken in Eq. (A-16). 

The Green's function g  (kiicülzz') is to be constructed so that 

Eq. (11-11) describes a scattered wave which radiates into the 

vacuum for z > d, and one that attenuates in the region z < o. 

This Green's function is simply expressed in terms of E (k||a;|z) 

and E (k||Cü|z) as follows: (20) 

g yy 
*l«l»«') = w gfa {Ej(klta,|z)E<(kll(olz') 8 (z-z') 

+ E^(k||a)|z)Ey(k„co|z/) 6 (z'-z)}  , 

(A-15) 

where 

aE> (k|M|s) dE^ (k„W|z) 

Is the Wronskian, a quantity independent of z. 

The form given in Eq. (A-15) is valid for any function 

€ (z,aj).  For the particular geometry of concern here, where 

€ (Z,ü)) is given by Eq. (II-6), it is a straightforward exercise 

to construct these two functions.  One has 

I 
+ ikoz 

ik,z 

,  z > d 

-ik,z 
E>(k||aj|z) -\ k^9    1 + A^e   1  , o < z < d  (A-17) 

ik2z   fxl -ik2Z 
B^'e 2 + B^^e  Z  , z < o 

us 
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and j    /  %   ik z ,  » -ik^z 
D^^e    0    ♦ D^^e      0     ,  z > d 

i      r   x   ik z rx  -ik.z 
E<(k,|ü)|z)  =<   C)x;e    0    + C.  '• ,   o  < z < d 

ik z 
e ,     z < o 

whero  in these expressions,  with a =+ or -   , 

(A-18) 

(i)  . e 
ikod   , k x    -iak,d 

kV' " ^2- (1  + ^ k^) e        * •                                                  (A-19) 

ik
od                     k Jc              k 

*n     ^ ^T- [(! + ^ k7>os(kid) " i £7 + ^ kj) «-(k.d)]    (A-20) 

CaX) " * (1 + ^) (A-21) 

ik d 
o 

D*
A)

  - -^-g— [(l  + a 1^)cos(k1d)  +  i   ^-2 + a j^) sinCk^)],   (A-22) 
o 1 o 

and the  Wronskian  is given by 

ik d 

W^ku.cü)  -^-5—    [(ki"k2ko)  sin(kid)  +  i(k0-k2)k1cos(k1d)]  (A-23) 

The functions g  (kutolzz') and g  (knwlzz') obey the coupled 
XX 2X 

equations Eq, (A-7) and Eq, (A-8).     These functions may be 

constructed by generalizing the method used to obtain g  (k||a)|zz') 

We begin by noting that if we seek a solution of Maxwell's 

equations in the form 

l(k|W|x) - {x Ex(k|la)|z) + z Ez(k|,a)|z)} e
ik"x  , (A-24) 

then the  functions  Ex(k||aj|z)  and Ez(k||aj|z)   satisfy  the    coupled 

equations 
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2   d2 
[€0(Z,üJ) ^ + -^ J Ex(kl,w|z) -i k| ^ Ez(k|la)|z) - o     (A-25) 

c   dz 

2 
"* k" ^ Ex(k|,a.'|z) + [€0(z,w) ^ - kf] ^(kgwls) - o  .  CA-26) 

For the geometry under consideration here, where € (z,a)) is 

piecewise constant, we must have ?•£ = o everywhere except at the 

singular points z - o and z - d.  This requires (except at the 

two points) 

■35- Ez(k||W|z)  +  ik|(  Ex(k|ta>|z)   =  o (A-27) 

Thus, if we are given £2(k||uj|z), then from Eq. (A-27) we may com- 

pute Ex(k||w|z) in each regime of interest.  We confine our attention 

to E (k||cc|z) as a consequence. 

There are two linearly independent sets of solutions of the 

system of equations from Eq. (A-25) through Eq. (A-27), just as 

when we examined Eq. (A-12).  We append the superscript > to the 

set E (k||üj|z), E (k||ioIz) for which E^(k||aj|z) obeys the boundary 

condition 
+ikr,z 

lim Ez(k|,co|z) = e  
0    , (A-28) 

z -♦ + 00 

and we append the superscript < to the set for which 

lim E^(k||a)|z) = e 
+ik2z 

(A-29) 
Z -• —00 

Before we proceed,  we display  the explicit form of  the fields 

E„ „(kiiwlz)  and E„     (kiitolz).     One has x,z x,z 
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ik z 

e    0       .    z > d 

E^(k„cü|z)  = 
.   x    ik^z ,„)    -ik.z 

,\0 e     1    ♦ A^^ e       1       ,  o  < z  < d 

D(ll)    
ik2Z ♦ B(,,; e Be 

(,)    -lk2Z 
z < o 

(A-30) 

.    k       ik^z 

<U.-|.) 4 ^ [»<•' eiklZ -^ e-iklZ]  .   o < z < d       (A-3D 

ik„z -ik0z 

,    kn  L + - J 
z  < o 

and 

D(.>eikoZ + D(.)e-lV z > d 

E^(k„wlz) 
t   x    ik,z (..\    -ik,z 
(•^ e     ^    + C01    e      1       ,  o < z  < 

ik2z 
e z < o 

(A-32) 

-ik  z 
L*2rD<,). 0'-D<,).""0"J . z>d 

kn   L   + - -J 

ikiz      ni)   -kiz 

E. :(klHz)=/.ll[cj^    "1    -Ci'^e    1]       ,o<z<d(A-33) 

kg ^ik^ 

kn 
z < o 

In these expressions,   one has,  with a -  -f- or -, 

y   x . , k  v   ik«d -icrk^ 
(A-34) 
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B(,) - e 
Ik d 
o li-q + ff qH^i«-1 fepz +' -€^)sin(kid)] (A-35) 

,(") 

.(H) 

K^-^ (A-36) 

Ik d 
o 

I 0 [(£2 + • r)«"»»!*' + '(«l ET " T^fV1""1!«1)] (A-37' 
O 1     O i 

Given the fields defined in Eq. (A-30) - Eq. (A-C ,   we seek 

solutions of Eq. (A-7) and Eq. (A-8) in the form 

g^k^lzz') = ^^ K(k(«|m) E^k^lz') e («-«' ) 

+ E^(k,|a;|z) E^dtncülz') e (z'-z)] 

(A-38) 

and 

-<. «2x(kltW|zz') =  -Jj—^Ck,«!.) E;(kl|W|Z') 9 (z-z') 

+ E2(k|,w|z) ^(kaw|s') 9 (z'-z)] 

(A-39) 

Substitution of these forms into Eq. (A-7) and Eq. (A-8) show 

that the solution indeed has the form of Eq. (A-38) and Eq. (A-39) 

if we choose 

W„ (k|,,cü) = W  (kn.w) - W  (k,,,^) (A-40) 

where W  (k||,u)) and W „(ki^cü) are piven by Eq. (A-18), but with 

y replaced by x or z. 

Explicit calculation shovs that for our geometry W  (k||,a;) and 

W  (k|t,ü;) are only piecewise constant, i.e. these functions zz 

are constant everywhere, but experience jump discontinuities 

at z = o and z = d.  However, the function  a?ii(kn, w) is truly 
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constant, with a value everywhere given by 

a?k    ik dr/   kox wi *i^ - 7-ir-z e  0 [(V ir) cos(kid) 
Ic k|| o 

€ok 
(A-41) 

^i ij - iKV1-^!«] 
Thus, we have left only the two functions g  (k||co|zz') and 

g  (knojlzz*).  If we attempt to search for a solution  of Eq. (A-9) 

and Eq. (A-10) by constructing the direct analogues of Eq. (A-38) 

and Eq. (A-39), we shall find the resulting functions fail to satisfy 

Eq. (A-9) and Eq. (A-10).  We recall that when we explicitly con- 

structed the Green's functions in reference (5), we found that g 
ZZ 

contained a term directly proportional to ö(z-z/).  Thus, we look 

for a solution of the form 

g xz (k„aj|zz') = w^k -^ [E^kucülz^kuwlz') e (z-z') 

+ E^(kltuj|z)E^(kl|aj|z
/) e (z'-z)] 

(A-42) 

for g  , but for g  we take 
JCZ ZZ 

gzz(k|,ü}lzz/)  =  r(z/)6(z-z/ ) 

+   ¥ife«r[<<ki«l«)<<M«') f (M') (A-43) 

+ E^(k|ia,'|z)E^(kllü)|z/)   e   (z'-z)]  . 

This  Term  indeed solves   the differential  equation with    W||(k||,a;) 

given by Eq.   (A-40)  and Eq.   (A-41)   provided we  choore 

2 
r(z')   =~ffC 

a) eo(z/,cü) 
(A-44) 
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We now have the explicit for« for all the Green's functions 

required for the calculation of the scattered fields in each 

region of interest. 
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FIGURE CAPTIONS 

Figure (1):  Illustration of the roughness on the vacuura-oxide- 

interface relative to that on the oxide-substrate interface 

for the four cases 

(a) {J, = C2 (replicating film model) 

(b) £, = -52 (non-uniform film model) 

2     2 
(c) (C^) ■ (C2^» but ^1^2^ = 0 (random roughness model) 

(d) Jo E 0» ^u* Ci ^ 0 (rough oxide layer model) 

Figure (2):  The geometry considered in the present paper.  The 

thickness of the oxide layer, Ci^y) measures the position 

of a point on the oxide-vacuum interface from the plane z = d, 

and C2^x»y^ measures the position of a point on the oxide- 

substrate interface from the plane z = d. 

Figure (3):  The change in reflectivity for a rough aluminum sur- 

face, for the case where the transverse correlation length 

is chosen to be 200Ä, and the rms amplitude of the surface 

roughness is 12A 

Figure (4):  The change in reflectivity for an aluminum substrate 

overcoated with oxide films of various thicknesses.  The 

calculations have been carried out for the replicating film 

model illustrated in Figure 1(a). 

Figure (5):  The change in reflectivity produced by surface roughness, 

for aluminum overcoated with an oxide film.  The calculations 

have been carried out for parameters given in the figure, and 

for the non-uniform film model illustrated in Figure 1(b). 

Figure (6):  The change in reflectivity produced by surface roughness, 

for aluminum overcoated with oxide films of various thickness. 
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The calculations have been carried out for the parameters 

given in the figure, and for the random roughness model 

illustrated in Figure 1(c). 

Figure (7):  The change in reflectivity produced by surface rough- 

ness, for aluminum overcoated with oxide films of various 

thickness.  The calculations have presumed the oxide-sub- 

strate interface is perfectly smooth, with roughness on only 

the oxide-vacuum interface.  The parameters used in the 

calculation are given on the figure. 

Figure (8):  The reflectivity of an aluminum surface overcoated 

with oxide in the ultra violet, for various oxide thicknesses. 

In these calculations, it is presumed that both interfaces 

are perfectly smooth. 
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F. THFORY OF LASER HEATING Of SOLIDS: I, METALS 

M. Sparks 

Xonics, Incorporated, Van Nuys, California 91406 

Calculations of the transient and steady-state temperature rise T 

of laser-irradiited metals indicate that the intensities If   that cause 

failure of lai>er-irradiated metals have drastically different magnitudes 

aid dependences on material parameters such as thermal conductivity K 

ami heat capacity C, on the sample thickness i  and lateral dimension L, 

and on the operating conditions such as the laser-beam diameter D and 

pulse duration t. The behavior dependt; on the relative magnitudes of D, 

I, L, and the thermal diffusion distance d = (tK/C) / .   The results 

suggest that the highest of the recently measured copper damage thres- 

holds of 125 to 750 J/cm2 for O.öysec pulses at 10.6jim are likely to be 

at or at least quite near the intrinsic lii      set by the simple process of 

melting that results from the intrinsic absorption. The theoretical inten- 

sity at which the cavity mirrors of recently developed xenon uv lasers fail 

is in good agreement with the experimental values. The theoretical value 

of T for metals irradiated for 20 seconds with 10.6|ini radiation is two 

orders of magnitude too small to explain recent experimental results. It is 

suggested that the discrepancy is related to plasma ignition at the sample 

surface. The steady-state value of T for metals cooled with a surface- 

heat-transfer coefficient h is not reduced substantially by increasing the 

cooling efficiency past a certain point (h > h. * K/i).   For t < T, where 

the characteristic time T depends on both X and h, cooling the metal is not 

effective in preventing the temperature rise. 

137 

OMMM^M^MM^MMMMM 



^HPV^   _       ■ mimnmw.*    •   i    <■.<■■ ■ —^qaawW«^«^ »^(»^■■■■■•■■»■»^^•»^»l""»^"^—" 

Sec. F 

I.   INTRODUCTION 

'ITie general problems of heating of mateiials, includi ,g transparent window 

materials, reflecting materials for mirrors, and absorbing target materials, have 

become increasingly more important in the last four years as interest continues to 

increase in high-power laser systems. In addition to understanding the results of 

a given experiment, it is important to understand the effect of charging material 

parameters in order to predict and interpret the difference in performance of dif- 

ferent materials.   It is also important to understand the effects of changing the 

experimental conditions such as beam diameter, intensity, pulse duration, etc., 

especially in view of the fact that material tests are often performed under differ- 

ent conditions from ihose of nonna! operation. In particular, there is increasing 

interest in small-scale tests to represent large-scale yperatin/ conditions. Small- 

diameter beams are "sed to obtain high intensities with low p 'wers. 

2 
Hgures of m«.» '    for transparent window materials have been developed for 

o 
"pulsed" operation, that is pulses with duratior of a second or two,' and for con- 

tinuous operation, and there have been numerous studies of damage by single short 

pulses (typically ~ lOnsec or 1 ^sec ).   The relation between these various condi- 

tions has not been considered previously. A previous study   of surface cooling and 

boundary-layer heating emphasized the spatially averaged temperature, which is 
2 

the important temperature in optical distortion   in transparent material having 

thickness I much less than the laser beam diameter D. 

The results of previous studies' '    of laser ignition of plasmas (laser supported 

detonation waves and laser supported combustion waves) at solid surfaces, which 

appear to have been overlooked in recent studies of laser damage to materials, are 
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shown to be important in obscuring the usual heating results in some cases, but 

negligible in others. Also, the results of the present study of heating are appli- 

cable to the laser-ignition studies. 

The nature of the heating of a material by a laser beam is different, depending 

on the type of material, the operating conditions, and the mode of operation. Impor- 

tant operating conditions include the relative magnitudes of the laser-pulse duration 

and several characteristic times related to the sample dimensions, laser-beam 

diameter, and the amount of cooling.   Modes of operation include single pulse, finite 

number of repeated pulses, infinitely repeated pulses, pulsed, and continuously op- 

erated systems. Furthermore, Jie relative importance of various failure mechan- 
7 

isms, such as material meltinf; or fracture, avalanche breakdown,    or thermally 
2 

induced optical distortion,    is different for different operating conditions.   For ex- 

ample, sodium chloride is considered by many investigators to be a good candidate 

for windows for use in single-nanosecond-pulse nigh-power 10.6jjim systems; 

whereas it is a poor candidate for pulsed or continuous high-power lO.öfim sys- 

tems.   This is because the high-intensity, single-pulse damage threshold is high, 

while the heating problem is severe as a result of the high intrinsic multiphonon 

absorption. 

In the present series of two papers, an overview of laser-heating problems of 

current interest in high-power laser research is obtained by presenting several new 
4 (S  9 

results and summarizing several previously known results. ' '     Previous results 

of two unpublished Parke Mathematical Laboratories reports     are included since the 

results are not readily available.   Some of the present results were presented at the 

1974 Advanced Research Projects Agency Materials Research Council Study on I ligli 

Power Laser Mirror Heating, Lajolla, California. 
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The temperature rise AT as a function of time and the fluence Ff at whic'^ 

failure occurs are calculated for various experimental conditions of current inter- 

est.   The results are sufficiently simple to show the effects of changing material 

parameters and experimental conditions, but are sufficiently accurate for estima- 

ting temperature rises and failure fluences. The relation between the steady-state 

results with cooling and the single-pulse and repeated-pulse results are considered. 

An exact analysis of material damage by laser heating is quite complicated. 

The following simplifying assumptions render the problems tractable and afford 

reasonable estimates of the values of fluence or intensity at which failure occuis. 

Radiation and convection are neglected, which is a good approximation ii; most 

cases of current interest.   For long pulses, high temperatures, ind no intentional 

cooling, thtie cooling mechanisms could be important, of course. The temperature 

dependence of the thermal conductivity K and heat capacity C are neglected.   For 

room-temperature ambient conditions the errors are of the order of 10 percent. 

For operation at low temperature, using constant average values of K and C could 

lead to greater errors.   The absorptance A for metals and the absorption coefficient 

ß for transparent materials vary more wM temperature than do K and C in general. 

Nevertheless, constant average values of A and ß are used.   Further approximations 

are discussed as they arise. 

The criterion for failure of a material varies with the application and is typically 

complicated. Here it is assumed that the failure occurs at a specified value AT, of 

the temperature rise AT.   Typical values of AT, are the melting temperature AT 

(measured with respect to the ambient temperature), the fracture temperature, or 
2 

the value of AT at which thermally induced optical distortion   becomes intolerable. 

140 



J.I II  III III ■.III.    ■■ II . Jl   p   ■■ ■  W I    !■ wi^m^^m^^^^^*^*^ 

Sec. F 

For optical components, the melting of the first small mass usually constitutes 

failure. Then the heats jf fusion and vaporization and the heat required to raise 

the liquid phase to the boiling point are not important. In other applications, a 

large mass of the sample may be melted or vaporized.  Melting is considered 

briefly in Sec. IV. 

In this first paper, on laser heating of metals, fracture is not considered since 

metals are known to fail by melting.  However, Wang and coworkers   have pointed 

out that fatigue may be important in repeated pulses. Thermally induced stresses 

8 4 have been considered elsewhere.  '      In a metal,  the radiation is absorbed in a 

thin layer at the surface.    The thickness of the layer, that is the skin depth, is typi- 

cally a few hundred angstroms or less at optical frequencies. It will he shown that 

this is sufficiently thin to be completely negligible, and that the resulting heating 

can be considered as a surface source.   There are other important systems in which 

energy is absorbed in a thin surface layer.  Hxamples include absorption by a thin 

antireflection or protective coating on an optical element, such as ■ window or a 

lens, absorption in the thin metallic partial reflector in vu/ lasers, absorption by 

a material having a very large optical absorption coeffici  it ß, such as infrared 

absorption by optical elements that are transparent to visible, but highly absorbing 

at infrared wavelengths, absorption by painted surfaces, and absorption by dirty, 

contaminated, or damaged surfaces.    Thus, the nonzero thickness of the absorbing 

layer vill be included for generality. 

The most important operating case is that of a large-diameter I") beam ( D » i, 

where I  is the sample thickness),  furthermore, the thermal diffusion distance d 

is often much shorter than   J or i; then the results can be obtained from a simple 

linear-heat-flow model. In tests, smaller diameters are often used to obtain high 
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intensities with relatively low-power lasers,   ilien D « i may be satisfied. The 

large-beam case D » i is considered first. An exact infinite- series solution to 

the heat-flow equation (with no melting) is obtained for the problem of a slab of 

thickness i originally at a constant temperature with heat produced at a constant 

rate for t > 0 in an absorbing layer of thickness Ö (0 < z < 6) with no heat flow 

at the surfaces at z = 0 and z = £. The approximation of constant heat production 

in the surface layer (0 < z < Ö) is quite accurate in the case of an antireflection 

or protective coating of thickness 6 with ßö « 1, where ß is the absorption co- 

efficient.   In other cases, such as the absorption by a homogeneous optical material 

with ßl » 1, replacing the exponential heating by the step-function heating will 

cause some errors in the temperature, especially at small times. When greater ac- 

curacy is required for the exponential-heating case, the solution at the end of Ap- 

pendix B can be used. 

The central results for this case of D » i for the premelting temperature 

distribution are illustrated in Figs. F1-3 of Sec. Ill, whicp show the temperature at 

the heated surface as a function of time and tho temperature as a function of z for 

several values of time.  The exact infinite-series solution for T (with no melting) 

is derived in Appendix A. In Sec. Ill, limiting cases of the exac: results are dis- 

cussed, and the results are explained by simple intuitive arguments. In Sec. IV, 

a simple treatment of melting is given. The small-beam case of D « £ is solved 

for the first time and th« result explained physically in Sec. V.  Steady-state results 

are deriv d in Sec. VI, and additional applications are considered in Sec. VII. The 

summary and discussion of Sec. VIII contains a tabulation of key-equation results. 

In Appendix B, an alternate approximation solution for T (with no melting), whicli 

includes the case of an exponential heat source S — exp(-z/£), is given. 

Important results are demoted by underscored equation numbers. 
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II. CHARACTERISTIC TIMES, DISTANCES, AND 
I IE AT- IK ANSM- R COE FFICIE NT 

In heat-flow and surface heat-transfer problems, three time constants 

% ■ cr/K. T   - CK/h^, s '     ' TC^  Ci/h^V,) 1/2 (2.1) 

and the related distances 

(Kt/C)1/2 , L    = (Kr  /C)1/2 . K/h, L    = (KT  /C)1/2.    (2.2) 

and the characteristic surface-heat-transfer coefficient 

hl =   K/JL (2.3) 

are important in developing intuition.   The first characteristic time T    is the time 

required for heat to diffuse across the thickness £ of the disk, roughly speaking. 

The second time constant f    determines the approach of the surface temperature 

of a semi-infinite medium to its steady-state value.   The third T    is the time con- 
c 

stant for the exponential decay of the temperature of a thermally thin slab (jt « L 
s' 

as defined below).  1 actors of order unity (4/f or  1/4 for example) can appear willi 

the time constants in (2.1) in specific problems.   Solving the first equation in (2. i) 
2 

for £ gives I    ■ KT  /C -- thus the definition of L   and  L    in (2.2). 
a S C 

It will be shown bekm that the thermal behavior of the disk will be quite differ- 

ent for the two limiting cases cf a thermally thin disk (£ « L , or T    «  T   ) and 
 s £ s 

a thermally thick disk (£ » Ls, or Ts  « T  ).   Good thermal conductors (large K ) 

with poor coolants (small h) tend to be thermally thin, and vice versa. Thermally 

thick also implies well cooled since h »  h   , where h is the surface heat-transfer 
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coefficient, is satisfied when i »  L   is satisfied.   In fact, it is easy to show s 

from the definitions (2. l)-(2.3) that 

*/Ls = <VTs)1/2=  VTc=  h/h£   =   hi/K    ' 
(2.4) 

Finally, for very short times, the time constant T, = C6 /K, where 6 is the 

skin depth, is important. 
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III.   LARGE BEAM, D »  £ 

First consider the temperature in an ur.cooled sheet of metal of thickness I 

heated by a laser beam of constant intensity I over the face of the metal.   This 

is a good approximation to the common operating case of D » I.   The heat leaving 

through the surfaces of the metal typically is negligible.  Since the heat flow Q is 

equal to -KvT, where v T is the gradient of the temperature, the boundary condi- 

tion at the surfaces is z •  7 T = 0, where z is the normal to the surface. Since 

there is no heat flow through the edges of the sample, the problem is one dimensional 

and the temperature distribution is the same as that of an infinite film of thickness I 

with 

dT/dz   =  0 at z =  0, £    . 

Hie initial temperature distribution is assumed to be constant, and the value of 

the constant is taken as zero for convenience.   Thus,  T will always be measured 

with respect to the initial temperature, and AT can now be written as T. 

'Hie radiation is absorbed in a thin region, called the absorbing layer, at the 

irradiated surface of the metal at z = 0.   For 10. 6fim radiation and values of the 

electrical conductivity appropriate to good metallic conductors, the skin depth typi- 

-2 
cally is of the order of 10    pm.   Since this depth is so small, the shape of the varia- 

tion of the intensity with depth is unimportant except for very short times, as men- 
3 

tioned above and shown below, 'llius, the source S of heat (W/cm ) in the heat-flow 

equation wil1 be taken as 

(iA/6) e(6-z) e(t) , (3.1) 
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-2 
where 9 is the unit step function, 6  a   10    fim, I is the incident intensity, and 

A is the absorptance of the surface.   It is assumed that K, A, and the heat capacity 

per unit volume C are constants.   For large temperature changes this assumption 

is not well satisfied in general.   Sufficient accuracy for many applications can be 

obtained by using average values of K, A, and C; otherwise numerical methods 

are required in general.   Hie results of this model apply to cases other than that 

of infrared heating of metals, as discussed in Sec. I. 

Hie differential equation and boundary conditions and initial conditions appro- 

priate to this problem are 

-KVl/Sz2   i   CÖT/at   -    S    . (3.2a) 

T(z, 0) « 0  , IT/I«  « 0 ,        at z = 0,X for all t   , (3.2b) 

and T and dT/dz are continuous at z = 6 ; S is defined in (3. 1).   An exact solution 

for arbitrary 6 is obtained in Appendix A, Hie results are illustrated in Figs. Fl-3 

for the case of  6 « i.    1 ig. 11 is a plot of the surface temperature T(n,t) as a 

function of time from (A12). I ig. i'2is a plot of the spatial dependence of T near the 

interface of the absorbing layer and the bulk of the material from (A13), and Fig.FS 

is a plot of T from (n2) adapted from Fig. 15, Chapter 3 of Carslaw and Jaeger, 

showing the temperature distribution across the sample at several times. 

iliese central results can be understood as follows:   The thermal time constai.t 

T.        C62/K (3.3) 
Ö 

is the lime constant for heat to diffuse a distance 6, roughly speaking.  For t « T, , 
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the heat generated in the absorbing layer 0 < z   <  6   does not have time to diffuse 

out of the layer.   Thus the temperature rise ii, the same as that of a uniformly heated 

slab of thickness Ö with dT/dz      0 at z = 0 and 6.   From (3.2) with -Ka2T/az2 

= 0 and S ■ 1A/Ö in the absorption layer, the solution is 

T  s   C^   tÖ(£ - z) e(t), tor  t « T.    . (3.4) 

in agreement with the limit (A4b) of (A2).   lliis result (3. 4) also can be obtained from 

the definition of the heat capacity 

CV  =   AE/T    , (3. 5) 

where AE /tV is the energy added to volume V per unit time 

AE/tV  -   1A/Ö    , a6) 

and T is measured with respect to the initial value.   Combining these results 

gives T »   I At /C 6 in the absorption layer, in agreement with (3.4).   The effect 

of the heat diffusion tl tlie edge z   =  6 of the absorbing layer is shown in Flg. F2. 

The time constant T£ ■ Ci /K from (2.1) is the time constant for heat to dif- 

fuse across the thickness £ of the slab, roughly speaking.  For T. « t « T , the 

heat has diffused out of the absorbing laver, but has not yet reached the edge of the 

slab at z = i.   The effective volume V _ which is being heated is determined roughly 

by the relation Veff ■   dd, where   OL is the surface area and d is tl e distance the 

heat is diffused.   With d ■ (Kt/C)1/2  irom (2.2, and with V ■   (Zd. (3. S) and 

(3.6) give 
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T   a   (IA/C6)(T6t) 1/2 (3.7) 

1/2 which has the correct functional form, 1   — t      , and agrees in magnitude within a 

factor of 1.1 with the limit (A4c) of the surface temperatuie. 

Finally, for t » T., the heat has diffused throughout the sample. As a first 

rough approximation, the temperarature is the same as if the sample had absorbed 

the radiation uniformly throughout its volume, i.e., it is the same as if S = IA/X, 

for 0< z < X.   llien (3.5)or (3.2) with -Kh T/^z    ■ 0 gives 

T   s   IA te (t)/C£ (3.8) 

This result neglects the temperature variation across the sample. 

In order to obtain a better approximation, try a solution of the form 

T «   GLt + f(x) (3.9) 

since it is expected that the shape f(x) reaches a temperature-independent form for 

t » T2   .   Substituting (3.9) into (3.2) and setting 

■KaT/ax  ■  0 

-   IA 

at  z  =   £ 

z  =  0 

for 6 «   £ (so that the heat capacity of the region 0 < z < 6 is negligible and 

the heat flow at x = 6 is equal to the absorbed incident intensity 1A) gives 

T  -   lA/Ci t  + IA (z - i)2/2Ki  +  G     . 
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The value of G is determined by requiring that the average energy 

E   =   C     I     dxT 
!, 

be equal to the energy I At added to the sample (per unit area).   This gives 

T   ^   IA/Cit + vIA/2Ki)   |(z-jir-   -        I (3.10) 

for t » T, and  6 « A.   This result is obtained by another method in Appendix li. 

K] 

The temperature difference T*. ■   T(0) - T(i) across the sample (for 

t » T2l) is, from (3.10) 

T0l   -  IA1/2K   , (3.11) 

and the temperature at z = 0 for t » T.  is, from (3. 10) 

T((),t) ^  IAt/CX    +   IAX/3K   =   (IA/CJO (t +  J T£ ) (3.12) 

Tlie value of T(0,t) lies above the lirear term IAt/C£ by the constant amount 

IA£/3K.  By energy conservation, the average of T(z,t) over all z must be lAt/CX 

according to (3. 8).   ITic constant term IA£/3K arises because T is parabolic in z 

according to (3.10);  thus T(0, t) is larger than the average of T(z, t) over z. 

The result (3.12) joins smoothly onto the result (A4c) at t =*   T   /3 as seen in 

Mg. I 1. At t ■ T£/3, (3.12) gives T(0,t )  = 2ATjl/3Ci  and (A4c> gives T(0.t) 

■  2IArf/(3t)      CH.   Since these two values differ by only 2%, the relation 
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T(0,t)   s (2IA/C£)(T£t/7T)1/2 for   T6 «   t  $   T£/3 

» (lA/Ci) (t-t-^ T.) for   t   ä   T£/3 013) 

is valid for Ö «   £ and  t » T.   with ~ 2% accuracy at the crossover at t s T6 / 3 

and with increasing accuracy away from the crossover. 

The large-slope, linear region  t ^  T6  in the inset in Fig. II corresponds to 

the curves in Fig. 12, for which  T a: constant for  z <  6 and T = 0 for z > 6. 

The T - t1^2 region (TA «  t   -   T  )in 1 ig. 11 corresponds to the curves in Fig. I 3 
o • 

with T ^ 0 at z = ^(t/T, < 0.1), and the Unear region t  > T   /4 in I'ig. IT cor- 

responds to the curves in Fig, 13 in which the parabolic spatial temperature clistri- 

hution moves up linearly in time (t/T^ > 0.2). 
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IV.   MELTING 

The problem of melting will be considered only very briefly.   After the surface 

temperature reaches the melting temperature T   , tht calculation of the subse- 

quent temperature distribution becomes difficult, as discussed in Carslaw and 

Jaeger,     Chapter 11.     In general, the li(|u'id-soIid interface travels across the 

sample, and the temperature of the liquid rises above the melting temperature T   . 

For the case of "total ablation,"  in which the liquid is removed instantly after melt- 

ing, the "burn-through" time required to mcit the total mass of the slab can be com- 

puted quite simply from energy considerations.       The energy required to raise the 

temperature of the volume    Ll, where   Ci is the surface area, from the initial 

temperature T0 to the melting temperature Tm is Cfl.X(lm - Tf)), and the en- 

ergy required t^ melt this volume of material after the melting temperature is 

reached is wQl, where H is the heat of fusion.   Ihe energy added is IA CU^ 

where t     is the time required to raise the temperature from T« to T    and to 

melt the sample.   Equating these energies gives 

lni  =   U/IA)     |   HrC(Tm-T0) (4.1) 

lliis result has been obtained pieviously        by a more complicated method.   Foi 

cases in which the material is not removed as soon as it melts, the value of t     is 

larger than the value given by (4. 1) since additional energy must be supplied to 

raise the temperature of the liquid. 

The more general total-ablation case in whini the absorption coefficient has the 

value A    before the surface melts and A, afterwards is easily solved.   I'sinu ilie 
s f ■ 0 

same energy balance method gives 
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IA„t     + IA.tu  =   £[H+C(T     -Tn)]    , 
s   m i   H m       0 

(4.2) 

where t     is the time required fo bring the surface to the melting temperature, and 
in 

t,. + t     is the total time required to melt the sample.   Hie value of t     is deter- 
H      m In 

mined by setting z = 0  and  t = t      in (A8) and solving for t    ,   and the value of m 

tH is then given by (4.2).   Limiting values of tm will be given in (4.6). 

The relative sizes of the two terms on the right-hand side of (4 i) or (4.2) can 

be illustrated by defining ci temperature Tj, by the relation 

H  H  CT H 
(4.3) 

For aluminum, C ■ 2.4J/cm3K and H ■ 103 J/cm3;  thus TH i 400K.  The same 

amount of energy is required to raise the temperature of aluminum 400 K (assuming 

that C is independent of temperature) as is required to melt it after the melting 

temperature is reached. 

1 he time required to melt a thin antireflection or protective coating also is of 

interest.   For a thin coating, the time  116/ IA required to melt the coating after Tm 

3 3 3 2 
is reached is negligible.   For example, for NaCl with H -- 10 J/cm", AI = 10   W/cm , 

and 6   - Ijxm,  t      ■   10     sec .   'llms the time retiuired to melt the coating is just 

t    , which is easily obtained as discussed previously, 
m 

Explicit expressions for t      can be obtained in three limiting cases.   The values 

of the temperature T .        and time  t .      at which the low-temperature linear region 
1 JU> i-O 

1 /2 
of T(0, t) as a function of t crosses the t        curve in the inset of Fig. Fl are easilv 

found by equating (A4b) to (A4c).   Uns gives 

T,    -  4IAA/fK  , fo ^o  =   4Vff (4. 4) 
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1/2 
In (3,13), the t       curve was joined onto the high temperature linear curve (3.12) 

at t -  t..     =   T-/3,   'ITie corresponding value T.. of T is 

Thi      =   2IATX/3C£    . th.   =   T£/3     . (4,5) 

For T     ( measured with respect to the initial ten oerature of the slab ) much 

less than T,   ,     T is given by (A4b); for     T     « T     < T.. , T is given by 

(A4c); and for T > T.. ,     T is given by (3.12).   Setting T = T and solving for 

t     in the three CPSCS gives m 0 

tm * CT/IA   .                          for T     « T. (4.6a) m m m io ! 

s   ffCKT 2/4A2I2   , for    T.     « T     <   T. . (4.6b) m ' ' io m h 

»   ClTm/IA- Ti/3    . for Tm   >  T^       . (4.6c) 

3 2 As an example, for aluminum 1cm thick with I =  10  W/cm , A = 0.2, C =2.4 

J/cm3K, K =2.4 W/cm  C, anu T    =  0.29 sec, the value ^f T^  is6::
1K.   For an 

initial timiperature of 0 K , T     2=  500 K; thus T     > 'I . .,     and t     is given by 

(4.6c), which gives 

t      =6 sec. m 

'Hie intensity recjuired to melt the surface bet-re a substantial amount of heat 

has diffused out of the absorbing layer is determir   ' by the inequality in (4. 6a), which 

can be v ritten as 

IA  »    irKTm/4 6      . (4.7) 
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For metals the required intensity is great because 6 is small.   For example, for 

-2 9 
aluminum with T     = 500 C, A = 0.2, and 6 =  10    ym, (4.7) gives I » 5 X 10 

2 
W/cm .   Even for the case of an antireflection coating with 6 = 2jAm, A =0.5, and 

7 
the same values of K and T     as those of aluminum, I still must be large (I » 10 

2 
W/cm ) in order to burn off the coating without heating a substantial part of the bulk 

of the window. 
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V.   SMALL BEAM,   D «   £ 

In testing materials, small beam diameters are often used in order to obtain 

higher intensities.   Then   D «   i may be satisfied.   For limes sufficiently short 

that the thermal diffusion is short with respect to D, the value of T  at the heated 

surface is given by the linear-diffi sion result 

T  -   2IA(t/ffCK) 
1/2 (5,1) 

from (8. lb). 

For D < d <  i., the heat diffuses hemispherically.   >ince the heat has not 

reached the back surface, the temperature distribution is the same as in a semi- 

infinite medium.  By symmetry, this is the same as that for an infinite medium. 

Thus, the infinite-medium temperature distribution for a point 6-function source 

T(r,t) -  (Q/4ffKr) erfc(Cr2/4Kt)1/2 (5.2) 

can be used.   Here Q is the energy per unit time added and erfc is the complemen- 

tary error function.   This is of course just the Green's function, and the maximum 

temperature (at r « 0) ll therefore 

I dQMnKp)'1 erfc (Cp2/4Kt)   . I (5.3) 

With dQ = IA2Trpdp, for a Gaussian beam I - I0exp(-2p /1^) , where D^ is the 

1/e diameter, (5.3) gives 

.2 
T  -   (I0ADe/4K) due'U   erfc (CD2u2/16Kt) 

15.S 
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2 
Vor t » CD  / 16K, erfc is approximately equal to unity everywhere except in a 

f 2 
very small circle near the origin.  T\ms, using    I   cluexp^-u  )  ■ /IP/2 gives 

•'o 

T  =  TT I0ADe/8K (M) 

for this case of D « d   <  2 £. 

A physical explanation of this result is not difficult to construct. Simply evalu- 

ating the point source resuU (S.2) at the edge of the beam (at r - ^I^) and using 

Q =   fdp2TrpAI0exp(-2p/De)
2 =   j nAl^ gives T - I0ADe/4K, in 

agreement with (5. 4) to wHün a factor of 2 //tT   -1.1. 

13 
Next consider the case of d » i.   The method of images      gives a good ap- 

proximation. With images (5.2) At ±21, ±44, ±61, • • • , the differential equation 

1 2 
and boundary and initial conditi;^ are satisfied.   Hius, with Q =  j'nAl()De and 

with D  / i neglected in the arguments of the images, for d » D 

2 

T - ,/T.0AV«K, ^   ^  erfc (Sii )   . gj) 

Since erfc(u) a  1 for u » 1, while erfc(u)« 1 for u « 1, (5.4) can be ap- 

proximated by 

T =  (/Fl0ADe/8K) [l + (De//f^)(l+ y+^+  ••• + ^)]   . 

21/2 1/2 

where m = (Kt/Ci )    = (t/r.)      is the numlier of pairs of images contributing. 

[See the argument of the complementary error functions in the sum in (5, 5). ] Ap- 

proximating the sum by in m + 0. 6 gives, for tins case of I) « X « d 

T « (/TUAD /8K)     j 1 + (D   //F£) Un(Kt/C£2)^   0.6] j       . (5^6) 
()      e | e j 

156 



W^^W»-W»»^^"W—»- —' ■■ mmm~wwt^~^^^m*T-m 

Sec. F 

Hie term containing the factor D  l/rTl, which is the term from the images, 

often is smaller than the first term, which is the direct source term.   For example, 

for D    = 0.084 cm, £ =0.6 cm, K = 3.9W/cmK, t = 20 sec, and C =3.4J/cm3K 
e 

14 as in the experiments of Saito, Charlton, and Loomis      on copper, 

(De//?
1£)[ jen(Kt/C£2) +0.Ö]   =   0.38   . 

'lliis small size of the image term indicates that the resulting temperature is not 

much greater than it would have been in a semi-infinite medium.   Most of the tem- 

perature rise occurs in time t = T,,^*   furthermore, experiments with time varied 

to determine the damage thresholds should be avoided in this case of s-O «  I  and 

t » T.   since t appears only in the small term, and is in the argument of a Icga- 

rithm.   Changing the beam diameter D   or the intensity I., would be effective since 

0    and I,, appear linearly in the large term. 

Hie result (5.6) has the following physical interpretation.  At time t   =   T« • tlie 

heat lias diffused out in a hsmisphere of radius I which touches the back face of the 

sample.  At that time,  1     y/FL A 1) /S K, according to (5.4).   The subsequent diffusion 

is radially outward« as a cylinder of expanding radius. The additional temperature 
9 

rise can be approximated by using the result for the case of heal added at a uni- 

form rate q per unit length inside of a cylinder of radius p..: 

,   2 
T(p)       -(qC/4TTK)Ki(-CpV4Kt)    , (5.7) 

.15 
where El   is the exponential integral      and the radius p satisfies p ^. p().   With 

2 2 
q = T0A(ffD   12)1 i and p - £  in the limit t » Cp /4K (then Ei(-u) ^ y* ^n u 

for small u, where y = 0.5772), (5.7) gives 

T   =   (lnAn2/8K£) [ £n(Kt/C£2) + 0.8]    . (5. 8) 
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In (5.8) we used jtn4 - r = 0.8.   This result (5.8) is the same as the im"^ term 

in (5.6) except for the negligible difference between the terms 0.6 and 0. H.    ilie 

simple model works quite well. 

These results (5.1), (5.4),  and (5.6) are schematically illustrated in Fig. 1 4a, 

For short-pulse operation, it is useful to consider the fluence  F at which the failure 

temperature Tf is reached.   Solving each equation (5.1), (5.4), and (5.6) for  F and 

sketching the results gives the curve in Fig. F4b. 
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VI. COOLKDSAMPU-S, SI KADY-STATK SOLUTION'S 

Next consider the effect of cooling the back side of a laser-irradiaied slab. 

For times shorter than the thermal diffusion time T7 . * C4i /K, the cooling 

has negligible effect because the heat has not diffused to the cooled back surface 

(and reacted back to the heated front surface).  For example, for copper with K = 3. 9 

W/cm K and C = 3.4 J/cm" K, the cooling has little effect for t < T9    , with T,, 

« 0.9sec for i = 0.5cm or T-, = 9x 10     sec for £ = 1 mm.   For nanosecond or 

microsecond pulses, cooling has little .ffect for samples of practical thickness. 

For short times t < T-) i the rernpei"ature is governed by the transient solu- 

tions of Sees. Ill and V, while for long times T approaches the steady-state value. 

For the large-diameter case (D » i), the steadv-state value T      of T is easy 
ss 

to determine.   It is assumed that at t = 0, the sample and the coolant are at T = T  . 
c 

and that the coolant temperature remains at T  .   In the steady state, the heat flow 

Q is continuous.   At the front surface the heat flow is 

Q =   Q0  =   IA . 

Acrojo the sample, 

Q  =  T0lK/i   , 

where TQ,   =   T(0) - T{i), and at the back surface 

Q  ■  T-   h    , 

where T,     = T(i) - T , with T    the coolant temperature. Fquating these values 

of Q and solving for Tss =  TQc =   TQ    -t   T£c gives, for this case of D »  I, 

15. 
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T      =  (IA/h)( 1 + h/h. )    , fiti) 
ss * 

and Tn    =  IA£/K and T      =   lA/h, where h, ■   K/l.   The transient solution 

from Sec. Ill and the approach to the steady-state value in (6.1) are show.i sche- 

matically in the solid curve in Fig. FSa for the thermally thin case (h « h^). 

Notice that   T      =   T at   t   =   T   , which is not s  rprising since T    is i uin.t nidi     ss transient c c 

the appropriate time constant for the thermally thin case.   The results for the cor- 

responding thermally thick case of h >  h    are sketched in Fig. FSb. 

An important feature of the result   (6.1) is that the temperature T-i   is not 

decreased substantially by increasing the cooling efficiency (increasing h) once h 

is greater than h£.   For h » li£. (6.1) gives Tss   ■ lA/h^, which is independ- 

cnc of h.   This is because the temperature drop T0c is then controlled by the drop 

T.    across the slab, the drop T      at the interface being negligible. 
() £ AC 

For the small-diameter case of D « i with cooling, the analysis is somewhai 

more complicated.   Since there are no experimental results for this case, the follow- 

ing approximate analysis should serve as a guideline to the effects of changing ma- 

terial and experimertal parameters and serve as a first approximation to the value 

of the temperature rise. 

2 
The heat diffusing from the heated spot of diameter irO /4 leaves the back sur- 

face and enters the coolant in an area at the back surface considerably greater than 

tr D2/ 4 .   As an approximation for the case of good cooling (h » h£ ), it is assumed 

that the area n(2 £ )2/4 is at temperature T, and that heat is transferred to the 

coolant at the rate h'l£cTr£2, where T£c = T£ - Tc.   Fquating this to steady-state 

2 
rate of heating I AtrD /4 by the beam gives 

T       2=   IAD2/4£2h    . (6.2) 
£c 
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With the inequality h » h£, (ö.2) gives T.   «  IAD /4£K.   With T » T0£ 

+ T,   .where Tft. Is given by (S. 4), anc'with l)/£ « 1, this gives 

T 2:  /FlnADc/8K (6.3) 

for this case of h » h.. 
i 

Vor the case of poor cooling ( h « h   ), the temperature distribution approxi- 

mately attains the cylindrically diffusing value (5.6) before the heating "takes effect." 

Thus, setting t   =  T     ■   £C/hin(5.6) gives 

T • (/7l0ADe/8K)     jl + (De//ff1£ £n(h£/h)+ 0.6 (6.4) 

for this case of h « h   .   This result can be verified by showing that the integrated 

heat flow lAffö /4 at z = 0 is equal to that 

c 

s. h     I    dp 2 77p T 

0 
\ dP2irP  (rsTr)  v'l\^T-c ) 

at z = £ .   'ITic 'ntegral is evaluated by changing the variable to u =   p  C/4 K T . and 
00 

using   -   \    Ju B i (-u)  =   1. 
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VII.  ADDITIONAL .MTLICAnONS 

In addition to the examples in the previous sections, there are several other 

interesting applications. Consider the Hughes Research Laboratories infrared- 

mirror damage test.    Copper and molybdenum mirrors were irradiated with 

10.6^m radiation having 0.6(isec nominal pulse duration.   In applying the theore- 

tical results to these experiments 't is important to include the temperature de- 

pendence of the absorptance and consider the 0.2^1 sec pulse peak in the nominal 

0.6 j^i sec pulse. 

From (2.2), 

d - (Kt/C)1/2 = 8.3nm 

for copper with K ■ 3.9W/cmK and C - 3.4 J/cm3K . This thermal diffusion dis- 

tance is much smaller than the beam diameter D and the sample thickness I. Thus, 

the top equation in (3.13) is valid. Solving for the fluence F ■ 11 nives 

F =   T(TrCKt)1/2/2A    . (7.1) 

The temperature dependence of C and K is not very important (~ 10,r, variation), 

but the pulse shape and the temperature dependence of A are important.   Hie absorp- 

tance, which is proportional to the electrical resistivity, is sketched roughly in Fig. F6 

for pure and impure copper. The value of A at the melting temperature T     = 1083 C 

is approximately six times greater than the room temperature value (for pure copper). 

From the typical curves shown in Fig. F6 it is seer that the average value of A on the 

interval 300K to T    is not drastically different for pure and impure samples. A rea- 

sonable average value is one half the value at T    or A = 3A        , where A is 
m pun» pure 

the room temperature value of A for pure copper. 
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Next consider the pulse shape in these Hughes experimenls, as sketched in 

Fig. F7. As a first approximation,   this pulse shape ein be replaced by a pulse of 

height I      and width O.bjjsec, as shown in the dashed line. A slight improvement 

is oUained by approximating the pulse by two pulses, the first ot height I       and 

duration t  . ■ 0.2^sec (or fluence F. = »the total fluency F    ) and the second of 

fluence F» ■ 2 F  and duration 0.2 j^isec . According to (7.1), T »« F/l   '   . Thus 

the first pulse gives a greacer temperature rise, and the second pulse is neglected 

in the present rough estimate. Putting these results into (7.1) gives 

F^ -  T(ffCKt  1)
1/2/2A tot pi'      '      pure (7.2) 

With T- 1080-20= 1060 K, C = 3.4 J/cni   K, K ■ 3.9W/cmK, t  . ■ 0.2^sec, and 

Apure = 4 x 10'3' <7-2)givcs 

F. , 2i  400J/cm tot J (7.3) 

The experimental value <)i the intrinsic threshold is not known, but the theoretical 
2 

estimate of 400 1/cm   appears to be within a factor of two of the experimental value. 

The highest fluence measured for polished mirrors was 125 l/cm", but a chemically 

etched surface, which was not a good reflector in the visible, withstood 7S0j/cm . In 

any event, the theoretical result suggests that the intrinsic limit could well be the 

simple process of melting the mirror material by the usual absorption processes, in 

which case the currently measured values are near the intrinsic limit. In passing it 

is mentioned that the value of d in (7.1) corresponding to die shorted pulse time of 

0.2 j^sec is 5 jim . 

Next consider the failure of the cavity mirrors in the first xenon lasers.       Hie 

following simple calculation shows that this failure is limply the melting of the alum- 

inum substrate as a result of tlie large absorptance in the vacuum ultraviolet. The 
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mirrors were made by depositing approximately 100 A of aluminum onto magnesium 

fluoride substrates. The laser intensity is absorbed in this thin alu.ninum film, but 

the intensity required to melt the film is controlled by the diffusion of heat from the 

film onto the magnesium fluoride substrate. The volume of material heated, most of 

which is magnesium fluoride, is equal to the product of the surface area illuminated 

times the effective thickness d, where d is the disianct into the magnesium fluoride 

that the heat diffuses. The value of d for a pulse duration o' lOnsec is, from (2.2), 

d  =   (Kt/C)1/2   =  0.2^im   , 

where K 2: 0.2W/cmK and C ■ 3.14 J/cm2 K for MgF2.  Thus d is much less than 

both the beam diameter D 2: 1cm and sample (MgF«) thickness i a  i cm, and 

the linear heat-flow result (5.1) applies.   As discussed in Sec. 1, for high-power 

optical components, a reasonable criterion for failure is the melting of a negligibly 

thin layer at the surface.   Thus, with   T »  T     ■  640 K (above room temperature 

ambient)  and A =0.2, (5.1) gives 

If =   (Tm/2A)(trCK/t )1/2   =  20 MW/cm2    , 

2 
or a fluence of 0.2 J/cm . 

The value of A = 0.2 is the value quoted by the manufacturer (Acton) of the mir- 

rors. Since the source of this absorptance at 7.2 cY is unknown and well above the 

17 intrinsic value     of 0.08, the temperature dependence of A is unknown,    ihus the 

published room-temperature value of 0. 2 was used,    llic agreement of the theoreti- 

2 2 
cal result of I, = 20 MW/cm   with the experimentally estimated value of 40 MW/cm 

is within the accuracies of the experimental value and the theoretical value (with the 

large uncertainty in the value of A). 
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linallv, consider the experiments oi Saito, Charlton, and lx)omis      in which 

De     O.OS4cm, I     0.6cm, t « 20 sec, and l() = I05W/cin2 for damage to copper. 

Since I) «  £ and d -   (Kt/C)1/2     4.Hem »  £,   1   is given by i^.b).   With K 

= 3.9W/cmK, C - 3.4 J/cm" K, and A - 0.01 for copper, (S.6) gives 

T  =   6.6 K     , 

which is a factor of i60 too low to melt copper (melting temperature of T    » 1080 

- 20 =: 1060 K above ambient).   The source of this great discrepancy between the 

experimental and theoretical results is not known.   Hie low experimental threshold 

may be related to surface-ignited plasmas, '     possibly the initial stages of this 

phenomena.    Hie power of appi jximately  1 kW in these experiments is at the 

measured threshold of 1.4-2 kW for laser ignition of plasmas at solid surfaces 

for D < 1 mm. 

The fact that dust on the windows in the experiments was observed to reduce the 

damage threshold to values below 10()W/cm , compared with the above experimental 

value of 10  VV/cm    and the theoretical value of 10  W/cm   for laser breakdown in 

dirty air, suggests that absorption associated with surface contamination may be in- 

volved.   The characterlvlic dust-damage patterns observed at the 10()\V/cm   damage 

5 2 
level were not obvrved in the 10  W/cm   damage patterns.   Iliis lack ot the dust- 

burn patten is consistent with a plasma phenomenon. 

Before considering the plasma ignition further, it should be mentioned that it is 

unlikely that hot spots in the beam are responsible for the low threshold.  For ex- 

ample, from (5.6) with the image term neglected, if the intensity were 100 times 

1 2 
greater than I0 in an area 100 times smaller than  4 TTD  , then T would be a fac- 

tor of 100//100" -   10 times greater, or T = 66K.   The fact that molybdenum did 
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not damage, whereas copper did, now has little significance until source of the 

discrepancy between experiment and theory is resolved. 

Hie present theoretical results have important consequences in the problem 

of explaining the laser ignition of plasmas at solid surfaces,   birst, ordinary heat- 

ing of the solid by the laser beam is not sufficient to ignite the plasma, since the 

temperature of 6. 6 K obtained above is orders of magnitude too small for ignition. 

On the other hand, a thermally isolated imperfection on the surface of the sulid 

could cause ignition.   Hie temperature rise   T    of such an imperfection is given 

by CV  =   AH/ T,   from (3.5), with AH =  la    , ira   t, where a is the radius of 

the imperfection (assumed to be spherical for simplicity) whose absorption cross 

section is 0    . times the geometrical cross section ira". Combining these two 

results gives 

T »   3arelIt/4Ca    . (7.4) 

For I ■   10 W/cm , t - 20 sec, C Br 3J/cmK, a      10|im. and a^el a 1, (7.^) 
a 

^ives  T   =   10   K.    Hüs extremely great temperatjre rise suggests that ther- 

maUy isolated or partially thermally isolated surface imperfections should be quite 

effective in igniting plasmas. Dr. Craig Walter* IK'S .suggested and stuiiied the mech- 

anism of plasma ignition by thermally isolated regions of aluminum on rolled alumi- 

S 2 num samples by shorter pulses (40nsec rise time) of ~ 10  W/cm   Intensity, and it 

appears that this is the controlling mechanism in his case.   It should be mentioned 

that s region of the sample that is thermally isolated for nanosecond pulses may not 

be thermally isolated for microsecond pulses or for essentiallv cw operation since 

there may be thermal-diffusion channels whose characteristic times are greater 

than nanoseconds but less than microseconds. 
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FinaUy for picosecond pulses, say iO'      sec. with K/C 2: 1, (2.2) gives 

d   2: 3 x 10     cm.   This small thermal diffusion distance indicates that for pico- 

second pulses great temperature rises do not require thermally isolated regions 

since the heated volume already is small. 
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Mil.   SUMMARY ANT) DISCUSSION 

The results derived for the temperature are summarized for the convenience 

of the i cauci: 

For i «  D: 

T  =   IAt/C6 , 

= 2IA(t/irCK) 1/2 

-   (IA/C£)(t  *-^T   ) 

--   IA(l/li +  I/h£)    , 

for t «   T. (K.la) 

for T. « t  L-   3 h (8. lb) 

for  ^ t^  t (H.1c) 

for t -» <», cooled • (8. Id) 

T(z) - (lA/Ci)   I t r (C/2K) /      »^     1 ,2 (z- £)    -  ^£ ,   for TSL « t 

T0i  E   T<0't) ■ T(*»0  =   IA£/2K   . for T    «   t 
i 

(8.2) 

(H.3) 

f;or D << £ 

T  =   2IA(t/ffCK) 1/2 
for t «  T, (8.4a) 

T   = /?1IüAI)c/8K    . for TD « t « T£ 

T   = 
8X 

h-°L  /£n .K*   f (,.\ 
/iTi  \      cr / 

for T, «  t 
£ 

T=/fri0ADe/8K    , 

,Io/ 

for t -» ^, well cooled 

T  = 
/Fln AD ( D 

Jir- 1 +   —^-     f £n li,/h   h  0.6 1 
cooleil 

(8.4h) 

(8.4c) 

(8.4d) 

—    [jtnh./h + 0.6]      for I -♦ », poorlv        (8. 4e) 
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In interpreting results, the following time constant, distances, and heat 

transfer coefficients are useful: 

Tl = cr/K   . Ts  =   CK/I,     , Tc-Ci/h = (T£Ts) 
1/2 

d  =   (Kt/C) 1/2 
L,= (KTS/C) 

1/2 
Lc  =  <

KT
C/

C
) 

1/2 

h^  -   K/i    . 

These temperature-rise results include both the transient and steady-state tem- 

peratures.   Hie approach to the steady state when the laser is tuned on follows the 

transient result for short times and approaches the steady-state limit for long times, 

of course, and the time at which the transient curve crosses the constant steady-state 

value is a measure of the system time constant T    .   For t « T    , the cooling is 

not effective in keeping the temperature low.   'Hie value of T   , cannot be smaller 

than ~ T2 ^    since the heat has not then diffused to the cooled surface and back to the 

surface at which the temperature T is measured, roughly speaking.   ( ' his result is 

obvious ;ilso from an examination of image solutions). 

Another important and interesting cooling effect is that increasing the cooling 

efficiency above the critical value 1^   «  K/i   does not result in a further 

decrease in T.   For h >   h£, tlie temperature is controlled by the temperature drop 

T0i acroM'he »ample, the drop T     at the coolant interface being negligible. 

Damage thresholds can be obtained from these results (8. 1) to (S. 4) by solving 

tlie appropriate equations for the intensity I or tluence  F.   The numerical results 

and the dependence on material parameters such as K and C are different, depend- 

ing on the relative size of the pulse duration t and the characteristic times Tc , T   , 

and rD and on the size of the laser-beam diameter I) witli respect to tlie sample 

thickness Z. 
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Application of the results to several recent experiments has interesting results: 

8 
Hie mirror-damage thresholds measured    with lO.b^jm pulses of duration 0.6jim on 

copper and molybdenum with D » £ are near or possibly ar the intrinsic limits set 

by heating.   Thus, nonlinear effects need not be invoked in order to explain the re- 

sults, as has been thought previously. 

14 
Ihe experimental damage intensities      for copper by twenty-second pulses of 

10.6||m radiation with D « I arc a factor of 160 lower than the theoretical value. 

Several possible explanations of this large discrepancy were examined. All were 

ruled out by simple arguments, with the possible exception of a phenomenon related 

to plasma ignition,   The evidence for such a phenomenon is inconclusive at best. 

The laser ignition of plasmas at solid surfaces by cw radiation or long pulses 

is not understood.    Hie present theoretical results suggest that the temperature 

rise caused by ordinary heating of the solid by the laser beam is orders of magni- 

tude too small to ignite the plasma, but that thermally isolated surface imperfec- 

tions could cause ignition. 

In another application, the model explains the failure of the üluminum-coated 

magnesium fluoride mirrors in the recently developed vuv xenon laset s operating 

at 7.2eV.   In a repeated-pulse system having many pulses per second, the heating 

effects are essentially the same as those of a rw system having the same average 

intensity unless the damage occurs in the first pulse.   In this latter case, the single- 

pulse results apply, of course.   It should be kept in mind that the increase in intensity 

resulting from reducing the pulse repetition rate and maintaining the average power 

constant can result in failure from nonlinear or other explicit high-power effects. 
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IX.   AC K NOW Lr DC ME NTS 

Dr. C. Walters and Dr.  I). Smit'i very kindly discussed their results on 

laser ignition of plasmas.   Appreciation is expressed to l)r. P. Hoff for several 

discussions of the livermore ultraviolet-laser program. 
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APPENDIX A. DKRIVATION OF FXACT SOLUTION FOR D « I 

First consider the problem of a semi-infinite medium heated by a source that 

is turned on at time t ■ 0 and has a constant value IA/6forO<z<ö  and 

vanishes for x > 6.   The surface of the medium is at z = 0.   The initial tempera- 

ture is zero everywhere, and there is no heat flow at z = 0.   The differential equa- 

tion is given in (3.2;i) and (3,1), and the boundary and initial conditions are 

T(z.O)   =   0    . a T/az = 0 at z = 0   for all t (Ala) 

lim T *  0    , 
z ■>• 

(Alb) 

where  1  and dT/dz are continuous at z a 6,   Taking the Laplace transform of 

(3.2a), solving the simple diffi-rential e(|uation in z, and inverting the Laplace 

transform gives 

T     =   T.  E 
oo < 

'0' 
2i2c ..1-.(^),/2-2^.I-fc(V^) 

1/2 

,   (A2a) 

for 0 <  z <   5 

T>-= 

2S0t 

C 
•2     f i   crfc 

z-6 
4t 

1/2 
•2     f i   erfc 

(^ ) 

1/2 
(A2b) 

for   z  >   Ö   , 

where i  erfc is the second integral of the complementary er'-or function, the sub- 

script "  denotes that the solution (A2) is for a semi-infinite medium, and 

TZ
1/2

S   (C/K)1/2.    . (A3) 
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The maxinuim value of   1 , at z = 0, is 

■   /,>    v       I At 1 - 4i2erfc (T6/4l),/2 
(Mii 

ft IA(/C6   , for t « T. (A4b) 

ft(2IA/C6)(t T./ff )l/2   = 2IA(t/trCK)1/2,    for t  » T6   .       (A4<:) 
0 

lliis is the solution for ;i Bemi-in finite niedium.   lor ;i medium of tinile iliiik- 

ness x with 

ai/az   - 0   , 

T(z.O)   ■  0    . 

at   z   -   0, i (A5) 

(Ah) 

the solution can be obtained by the method of images as follows:   The infinite-medium 

solution   '>(/ )  in (A2b) still satisfies the differential equation (Al) when displaced 

by an arbitrary distance d and/or reflected in the z      0 plane; that is,   I    (z - d) 

and   r^(-z)   are solutions to (^.2.1).    Ibe function   I    (z) *   I'   (-z * 2f) satisfies 

the differential equation ;ind the boundary condition (AS) ;it  z      |. hut it does not 

satisfy the boundary condition (AS) at z - 0 because of the "backward-propagatii^" 

image term T   ( -z  f 2 i), which corresponds to the solution of the problen    xf a 

semi-infinite medium extending from z     2£ to z =  -• with S = IA/Ö for 21 - fi 

< z  < 2£ and G      0 otherwiTC, d'l/az      0 at Z = 21, T(z,0)      0, and   I  -♦ 0 

as z -> -™. Adding a "forward-propagating" image at z =  -2i,   •^(z \ 2},), gives 

TJz) ♦■ 'r>(-z f 2 0 + '^(z f 21) (A7) 
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which satisfies the boundary condition (AS) at  /      0, hin not at z      JL. Continuing 

this procedure eener-tes the solution as an infinite sum of images   1 -    1    (   I    , 

which can he written as 

T(z,t)   -    l.(zft) ♦   T_(z,t) 

■   1^(2, t) ►   T-(stt) 

for 0 <  z   <  6 

for z >   Ö    , 

(AH) 

where 

(2IAt/C6) £     S l2erfc«  I (-1 )P/ ♦ 2 n£ - 6 
p=()   n=l     | L 

] 
.2 
i   e .-rfc ft    [ (-l)Pz  ♦  2njt f   6^ 

\     ' 
(A9) 

1/2 
with  A  s   (C/4Kt)       .    I;f|uati()ns (A7) and (A4) arc elated hv the expression 

l>(lz + 2nZ)  =   (2S()t/C) i" erfc * (±z * 2ni - 6) 

2 
i   erfc ^(lz  f2n£  •  6) (A10) 

Hie bel.avior of   J   as a function of z and t  is easily obtained from the Image 

interpretation.   For t «   T    the image terms .ire small; thus 

1    2   T for t  «   r 
l 

For t  «   T2 ,. T is approximately equal to the sum of the   1^ term and the first 

image: 

T =   T^ + T^-z f 2i)    , for t   <<   T2£    . 
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Similarly, for   t «  T     ., only m images are required.   N'athematicallv, the 

convergence of (AV) is very good because 

9 

i   erfc 4 1 I 
e 

.n- 1 
for 4 »   1 (All) 

Hie temperature   I (0,t ) at z  « 0 is obtained by setting z  - 0 in (AS); 

T(0,t)       l-rr    '  1 - 4i2erfc*Ö 

t4   J      [ i2crfc A(2ni; - 6) - i2erfc M2nX . 6)1   ' 
n=l    l J   ) 

(A12) 

In the limits t   <   T, / 8 and  6 «  £, all terms in (AS) are nejjigible except 

the followi ig: 

T  = \ 2       r ••-1/2      - 11 
- 2 r erfc       t ( 1 - z ) J for 0 < z <   1 

~    2 
t 2 i   erfc 

~-l/2    „ 
t (z -  I) fc     z   >    1      , (A13) 

where T"   Ci/IA,   t  -   t/r. , and z H   z/i.    lids result (A13) is plotted m 

Flg. F2. 
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APPENDIX 15. USEFUL APPROXIMATE SOLUTION FOR 6 « I « D 

An accurate approximate solution for the case of 6 «   i can be obtained as 

follows:  1 or t <   T, /2u , the back surface at z = X has no effect on the tempera- 

ture distribution since the heat has not had time to diffuse to this surface.    Thus, the 

~ 2 ■olirlon T    in (A2) for a semi-infinite film is quite accurate for t < T   '2ff    in 

the slab of thickness I. 

'•oi times t » Te , the heat has diffused well out o    he thin absorbing laver. 
0 

Also, for t » T«i tlie temperature drop across   tlu-layer is nejiligible, as easily 

seen from (A2a), v/liicli gives 

1   (0,t)-T  (6,t) i+2i2erfc2*iö-4i2erfc *.6 
CD OO / 

T.<0»t) l-4i2erfcf:6 

K    j    . for   t  « T6 

^   dihb) «  1   , for t   » T5     , (Bl) 

where ^6  =   (T./4t) '  .    ITius the source :'. can be replaced by a conrianf heat 

flux IA into the slab at the surface at z      0.   Clearly,  11 5 -♦  0 and  S -» °° in such 

a way that  G6 remains equal to a constant (o6)()t then S = (Sö)()6(x), where 6(x) 

is the Dirac delta function.   From the theory of Green's function solutions to boundary 

value problems, ll   - well known that a delta-function source at a boundary is equiva- 

lent to an inhomogcaeous boundary condition -- in the present case, a constant heat 

flow at the surface,    llius, the solutions 
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6-U '"(id     ^   | I i erfc m 1/2 
(2n+f) 

♦-  I erfc 
\ Jf) 

1/2 

(2..J-|) 

2   ,2 ixt   lAi   1 3r-£ 
I 

^      £    L4iü   e"17^ 
b£ IT2    n^l     n^ 

cos nfff   ) 
£      ) 

(152) 

where  C        i   - '■,   r C i2/n2 TT2 K , and I A       (:; 6 )„, to the heat-flow equation 

(:j.2a) with the houndaiy ami initial condition 

6\ I A at z - 0     t 

11 -   0 it z = i 0*3) 

1 (z,0)  -  0    , 

are accurate approximations to the solution of (3. 1) an 1 (3.2) for 

t   »  T. 6 «   £     . (B4) 

It is easy to show directly that (A9) reduce; to (152) when the inequalities (B4) are 

satisfied. 

Summarizing, for b <<   I,    1  cau be approximated hy 

T   s   T      . for  t < T-/2t< 

i    I 
6-»0    ' 

for t  »  T6/4     , (B5) 

where T    and T.    ,,  arc defined in (A2) and (H2),  respectively.   In the region 

Tc   «  t   < T   /2n2, both (A2) and (152) ire accurate approximations. 
o £ 
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The result (3.10) derived in Sec. Ill can be obtained from (B2). I;or t » T , 

all the terms in the sum on n in (N2) are Mgliflble; thus, with ^ z - X, (152) re- 

duces to (3. 10). 

Ilns methixi of approximate solution affords the advantage that it is easily ex- 

tended to sources S other than the spatial step function in (3. 1).   lor example 

Ü       yoexp(-az ) (HS) 

is more realistic than the step function for metals and for homogeneous materials 

with ßl  »  1 .   In a semi-infinite medium ( / > 0) o.iginallv at   I       Ü w*'.li no 

heat ""low at /.      0 and with the heat source (H-O, 

0 l/"' 
-^ (Kt)17"   i crfc 

2 («I )1 '-,      a" 
1—     *■- 

a/ 

a" Aft - oz 
—1-   «-' 
2a" K 

•Iff a(^r ) 1/2 

2{KnW2 

"0 
—T- 

2a" K 

a"^t ¥ az 
e erfc a(^t) 1/2 

2(|ft) 1/2 (B6) 

where    K   -   K/C.    Tor a slab of finite thickt.'-s i »  b =   i/a, an üccurate 

approximation to   I   is giver by (b6) for t <  T. '2ir    and bv tli2) for t  »  T, . 

;Vn image solution coulJ be generated from (Bh) just as the image solution was gen- 

erated from (A2) in Appendix A. 
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Figure Captions 

1 ig.  II.   Time dependence of the temperature T((), t) at the illuminated 

surface (hottest plane).   The inset shows the small-time behavior of T(0,t). 

lig.  F2,   Spatial dependence of tlie normalized temperature KT/IA6 

in and near die absorbing layer showing the near-step-function profile for 

t/ Te  «  1;   the broadening of the region of rapid temperature change as 

t/r,  increases; and the near-constant temperature in the absorbing layer 

(0< z < 1 > where z =  z/6,   ' r t » T  . 

1 ig.  13,   Spatial dependence of the temperature for the case of 6 «  i, 

and t » j Tf.  showing:   the isolation of the temperature change near the 

illuminated surface (z = 0) for * << T T „ (rlie curve marked t/r    »  0.01, 

for example);   and the approach to a parabolic distribution as t/T. increases. 

For t/r    =  0.30 (top curve) the distribution is very nearly parabolic. 

1 ig.  14. (a)   Temperature rise for the case of I fixed and t varied, 

(b) Fluence for the case of T fixed and t varied.   In both cases,  D « £. 

lig.  F5, (a) Temperature rise for the case of I fixed and t varied, 

(b) Fluence for the case of T fixed and t varied.   In both cases,  I « D and 

h » h „. 

lig.   16.   Rough sketch of the absorptance A of copper (A ^ p). 

Fig,  F7,   Sketch of pulse shape in the Hughes experiments (Ref. 8). 
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G. CURRENT STATUS OF MCH-INTENSTTY 
VACUUM ULTRAVIOLET MATERIALS* 

M. Sparks and C. J. Duthler 

Xonics, Incorporated, Van Nuvs, CaUfornia 41406 

Ihe recent successful operation of vuv lasers has attracted wide 

attention to high-intensity vuv   materials since the first lasers were ma- 

terials limited. In contrast to the IR case, the reflector problem in the 

vuv is more severe than the window pr^'em, the number of candidate 

materials is much smaller, and optical-tolerance re^uiieinents are more 

severe. With extreme care in sample preparation the absorptance of alum- 

inum, the only suitable metallic reflector, approaches 1%, which we show 

to be the intrinsic value.   l"he absorption coefficients of transparent mater- 

ials are currently extrinsic, with typical values of 0. 1-1 cm    . 

Calculations of the thresholds for damage in transparent materials in- 

dicate that with a single 10 nsec duration xenon-laser pulse, the failure 

intensity L is: ~20MW/cm2 for melting of a lOOA-thick film of aluminum 

on magm sium fluoride; -70 MW/cm2 for optical distortion by two-photon 

..jating in windows and total-internal-reflection devices; ~200 MW/cm   for 

transparent-material surface damage; ~lCW/cm   for thermal fracture bv 

two-photon heating; ~ 1 GW/cm2 for fracture from enhanced stimulated 

Raman scattering in Raman active materials; ~S0() MW/cm   for optical 

distortion by one-photon heating with absorption coefficient ß - 0.1 cm    ; 

and ~100(;W/cm2 for thermal fracture by one-photon heating with /3 ^ 0.1 

cm'1. The failure intensities for thermal fracture and optical distortion are 
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in general orders of magnitude lower in cw and repeated-pulse (»peration 

than those given above for a single 10 nsec pulse.  Multilayer dielectric re- 

flectors have greater theoretical values of L, but technical problems also 

must be considered. 

A first estimate of two-photon absorption in UF gives ß     1 cm     as 

2 
the theoretical value of the absorption coefficient for 1     2CW/cin   at the 

photon energy titc ■ 7.2eV ot the xenon laser. With this value of ß, the 

optical distortion caused by two-photon heating of transparent optical com- 

ponents has the lowest failure threshold of all processes considered. 

Hie recent successful operation of vacuum ultraviolet lasers has attracted wide 

attention to the problem of high-in'ensity materials,   ihe first xenon l.isers in fact 

were limited by the materials problem of the burning off of the aluminum films used 

as cavitv mirrors. It is (|uite likely that we are now at the beginning of a new era of 

materials development in the vacuum ultraviolet. 

Ilie current status of the AH PA-sponsored vacuum ultraviolet matt-rials pro- 

gram will be sketched.  It is emphasized that the program is in the earh stage of 

development. To date we have tried to anticipate the major materials problems 

that will arise as higher power becomes available in the vacuum ultraviolet, make 

order-of-magnitude estimates of the important processes,  then studv the uuiivuiual 

problems in more detail. In this way an overview of the field was obtained, and the 

various parts of the program were kept in perspective.  Hopefullv this has avoided 

making analyses that later turn out to have little impact.  1 or example, at the be- 

ginning of the program exhaustive studies of a number of metallic reflectors could 

have been made. It now appears that this would have been of little use, as dis- 

cussed below. 
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Since this is a conference proceeding on Infrared materials, comparisons ..I 

tlK ultraviolet materials prohk-ms to the infrared nutenals prohlems will IK- made 

whenever possihle.   llic probkius ot obtaining high-powc. «acuum ultraviolet (vuv) 

materials ..re mort- difficult .md .juite different from those in the infrared. 

In Rg. (i Ihe absorption coefficient is shown schematicallv as a function of 

frequency. To the left there is the familiar infrared peak in the .ibsorption coeffi- 

cient 3  it the Keststrahl fre<|uencv. followed by a nearly exponential decrease in ß 

as the fiequencv increases.   Iliese features are undersKKxl in terms of multiphonon 

absorption. As the intrinsic multiphonon infrared absorption decreases with in- 

creasing frequency to a sufficienlh  small value, il is overshadowed bv Ihe extrin- 

sic absorption. 

At frequencies generally much higher than the fundamental Keststrahl fre- 

quency in the infrared, there is another strong absorption edge due to the elec- 

tronic absorption which limits ultraviolet transmission.   In the vuv,  the emphasis 

will be on -.2eV (compare 0. I e\  for lO.o^m ) since this is the frequeno of the 

xenon laser. Ik-low the electronic absorpt.on peak, as the intrinsic absorption co- 

efficient reaches low values, the absorption is dominated In extrinsic absorption 

as in the IR case. Currenllv the extrinsic absorption is greater in the vuv (upi- 

i -4-1 
callv 0. 1 to 1 cm'   ) than in the IK (typically H»     cm     ). 

In the intrared region it is possible to handle greater powers with metallic 

reflectors than with transparent materials because the absorptance of mel..ls m 

the infrared is extremely low and because it is much easier to extract the ab- 

sorbed heat from metals tlian from transparent materials.    Ihus in the Infrared 

plane reflectors are made from meials ami focusing of be.ims has been accom- 

plished bv curved metallic reflectors rather than by lenses. IW contrast, in the 
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vacuum ultraviolet transparent materials can handle higher intensities than can 

metallic reflectors. Thus it is anticipated that lenses will be more important as 

focusing elemenr/, than curved metallic reflectors and dielectric-stack and total- 

internal-reflection devices will probably be more important than metallic reflec- 

tors for plane surface reflectors. 

The reason for this difference is that the absorptivity of metals is generally 

high in the vacuum ultraviolet. Aluminum is the best vuv metallic reflector, and 

it is unlikely that a more suitable metal will be found since the plasma frequency 

must be high (three electrons for aluminum) and the interband transitions must 

be weak (nearly free-electron behavior for aluminum). 

With extreme care in sample preparation, the absorptance of aluminum ap- 

proaches 8 percent.   ITiis has only been possible in laboratory environments where 

thin films can be deposited rapidly at extremely high vacuums on supersmooth 

substrates and then overcoated by a protective layer such as MgFj or LiF. The 

best commercially available reflectors by contrast have an absorptance of about 

20 percent and unless considerable care is exercised in preparing the samples 

the absorptance can be 40 percent or greater. 

In Fig. Ci2 the reflectance of aluminum as I function of frequency is shown. 

In the infrared region the reflectance approaches 100percent for the scale of the 

figure, while the reflectance at the xenon laser frequency of 7.2 eV approaches 

approximately 8 percent. As the frequency passes through the plasma frequency, 

the reflectance drops to a value near zero, of course.   This top ( 8 percent) 

curve is for the case of extreme care in sample preparation. 
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Fig, C,2. Reflectance of aluminum showing the Interband and surface plasmon abaorp- 

rion bands« 
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The effect of surface roughness on the reflectance is shown by the series of 

lower-reflectance curves. The greater the surface roughness, the greater the 

absorption as shown.  For higli-intenhity reflectors, the limiting value of 8 percent 

absorptance is much greater than the infrared value of a small fraction of a per- 

cent absorptance. M. Sparks and H. C. Chow   extended the previous calculations 

2 
of Ashcroft and Sturm   made for frequencies below 4eV to the higher frequency 

range of current interest and found that the absorptance of S percent is intrinsic. 

Since aluminum is the best reflector in the vacuum ultraviolet and since it is ex- 

tremely unlikely that other better metallic reflectors will be found, it is important 

that reflectors other than metallic reflectors be developed. 

Before going on to the transparent materials which would be used in these 

dielectric reflectors as well as in windows and other optical components, con- 

sider the failure of the mirrors in the first xenon lasers. A simple calculation 

shows that this failure is simply the melting of the aluminum substrate as a re- 

sult of the large absorptance.   llie mirrors were made by depositing approximately 

100 A of aluminum onto magnesium fluoride substrates,   line laser intensity is ab- 

sorbed in this thin aluminum film, but the intensity required to melt the film is 

controlled by the diffusion of heai from the film onto the magnesium fluoride sub- 

strate.   ITie volume of material heated, most of which is magnesium fluoride, is 

equal to the product of the surface area illuminated times an effective thickness d, 

where d is the distance into the magnesium fluoride that the heat diffuses.  For a 

2 
given pulse length t   , the standard heat diffusion result is t   = 4Cd/lfK, where 

C is the heat capacity per unit volume and K is the thermal conductivity.  From 

this result and the heat capacity equation C\'A I      I A, where AT is the tempera- 

ture rise resulting from the pulse of intensity I on the metal having absorptivity A, 

solving for 1 gives 
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lf- 2A 

/ \^2 

(i) 

where the subscripts f denote failure intensity and failure temperature rise. 

For a pulse duration of 10 nsec and the value of C and K for MgF? , hq, (1) 
2 

gives a failure intensity of approximately 20 MW/cm , which is equivalent to 
2 

0.2 J/cm   for this pulse duration. Both the failure intensity and the failure flu- 

ence chang 2 as the pulse length changes, since the diffusion distance d depends 

on the pulse duration. 

Next consider transparent materials. As in the case of reflectors, the probi?^! 

of transparent materials in the ultraviolet is much more difficult than in the infra- 

red.  Materials must have large bandgaps since the absorption edge must be above 

the operating frequency which is 7.2 electronvolts for the xenon laser, liiere are 

only a few materials with sufficiently large bandgaps, and most of these are unsat- 

isfactory for use as practical optical components. See Table GI.  Furthermore, 

the optical tolerances are much more severe in the vacuum ultn,violet, and the 

paucity of materials mikes it difficult to obtain satisfactory dielectric reflectors 

and antireflection and protection coatings.   There is no experimental information 

at present on the high-intensity failure of transparent materials since high-intensity 

sources have not been available for a sufficiently long time for measurements to 

have been made.   Thus one of the most important parts of the program has been to 

make preliminary calculations of the values of intensity at which materials are 

expected to fail by various mechanisais. 

A tentative result of these calculations is that the two-photon absorption is the 

most important failure mechanism for single short-pulse systems (pulse length 10 

nsec). Fnergy bands of a transparent solid are shown schematically in Fig. G3, 
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•   SrF2 >9 NaBr 7.7 

•   BaF2 >9 • Siü2 ~7.7 

•    NaCl 8. 6 • MgO 7.3 

Table CII. Electronic bandgaps of candidate materials for high-intensity vuv 

optical components. The buttons designate the more practical materials. 

• LiF -13 

• MgF2 -11 

KF 10.9 

NaF >1().5 •    KC1            8.5                     Kl              >6.2 

RbF            10.4 LiBr         -8.5 UI              >5.9 

CsF           10 •    Al203        8*3 NaI            >5,8 

UC1 -10 RbCl          8.2                      Diamond      5.33 

CaF2 -10 KDr             7.8 
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f\CJ 
Intermediate 

Finaf 

Initial | initial        \     f\ 

1 ig. G3, Schematic illustration of two-photon absorption. 
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The bandgap must be greater than the photon energy; otherwise the one-photon 

absorption would be extremely large.   Several materials have sufficiently large 

bandgaps to avoid one-photon absorption at the xenon-laser frequency, as shown 

in Table Gl. However, the bandgap of all known materials is less than twice the 

xenon-laser frequency so that two-photon absorption is always possible. 

Two-photon absorption is illustrated schematically by the double arrow in 

Fig. G3. The absorption process is a second-order process in the sense of per- 

turbation theory. The first photon causes a virtual transition to an intermediate 

state as shown by the first curved arrow, and the second photon causes a virtual 

transition from this intermediate state to the final state as shown by the second 

curved arrow. Calculation of the absorption coefficient for this process is rather 

complicated. Since it became apparent at an -;arly stage in the program that a 

precise calculation would be time consuming   a rough estimate of the absorption 

coefficient was first obtained by making some simple refinements to a previous 

/eroth-order theory of Braunstein."     it was found that the absorption coefficient 

was proportional to the intensity and had a value of 1 cm     for an intensity of 

2GW/cm2.   lliermal distortion from two-photon absorption lias the lowest value 

of the failure intensity (70 MW/cm   ) of any of the processes considered.   Ilier- 

mally induced fracture occurs at If * IGW/cm .   In view of these facts and the 

consideration that the accuracy of this estimate is less than an order of magnitude, 

refinement of two-photon absorption theory is one of the main goals of the program. 

Next consider the values of the failure intensities for other mechanisms in 

transparent materials. The surface-da mage mechanism, which occurs for ex- 

ample by the absorption of a macroscopic inclusion, can vary drastically from 
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sample to sample depending on the type of inclusion or the type of damage 

mechanism, just as in the cases of visible and IR radiation.  A typical value for 

2 2 
alkali haUdes is 200 MW/cm , or just 2J/cm . 

Damage can also result from Raman scattering since phonons are generated, 

which means that heat is generated in the crystal. If there were only the usual 

stimulated Raman scattering, the intensity threshold for damage by this heat gen- 

4 5 
oration would be quite large. However, it has recently been shown '    that the 

Raman process .ias a parametric instability, which is analogous to instabilities 

that arc well known in the cases of ferromagnetic resonance, higher-order absorp- 

tion processes such as parallel pumping in ferromagnetism, in plasma physics, in 

atmospheric propagation, and in a number of other fields.   Hie effect of this insta- 

bility is that as the intensity reaches a threshold value which has a typical value 

of IGVV/cm2, the incident laser beam is converted to Stokes radiation in a very 

short distance near the surface of the crystal. Since one phonon is created for 

every Stokes photon created, the heat generated in this narrow layer near the sur- 

face is extremely large, and surface damage is expected to occur. 

'l"he final mechanism is that of the simple one-photon absorption by impurities. 

For an impurity absorption coefficient of 0. 1 cm    , the failure intensity for thermal 

2 2 
distortion is approximately 500 M\V/cm .   'Hie intensity for fracture is ~100GW/cm 

This value of the absolution coefficient of 0. 1 cm     is at the lower range of 0. 1 to 1 

cm'1 for a numbe. of materials for which the measurements have been reported. 

Reducing the impurity absoq)tion to lower levels will not result in further improve- 

ment in single-pulse operation since the absorption is dominated by the two-photon 

process at these intensities. The values of absorption coefficients for the various 

processes are shown in the bar graph representation in Fig. (.4. 
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1 Aluminum Film Melting 

'~]   Two-photon, Optical Distortion 

1 Macroscopic Inclusions 

_____^ One Photon (0.1 cm"1), 
 1 Optical Distortion 

1 Two-photon, Thermal Fracture 

ES Raman Scattering, 

Thermal Fracture 

] 

10l 

MW'cnv 

10 nsec Pulse 

5 107 108 

One Photon (0.1 cm"1). 

Thermal Fracture 

109        1010        ^n 

GW/cm2 

Failure Intensity in W/cm2 

1 ip. Ci4. Summary of values of failure intensities. 
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H. IMPLTKITY ARSORPIION IN IIAUDE WIN1X)W MATKRIALS* 

C. J. Duthler 

Xonics, Incorporated, Van Nuys, California 91406 

Molecular-ion impurities that substitute for the halide ion in 

alkali-halide and alkaline-carth-halide crystals constitute an impor- 

tant class of impurities limiting infrared transmission in laser-window 

materials.   A literature survey indicates that concentrations of less 

- -        2- 2- 
than 0.1 ppm of NO« , HCcL , SO    , and CrO     will yield an absorp- 

-4      -1 
tion coefficient  ß > 10    cm     at 10. Ojxm in KC1 or KBr.   Ibe hydroxyl 

ion (Oil    ) will severely limit transmission near 3^m. 

I.   INTRODUCTION 

Among the most promising materials for use witli high-power 10.6|im wave- 

length CO? lasers are fie alkali halides, in particular KC1 ami KBr.   The mechan- 

ism for intrinsic infrared absorption in these materials is multiphonon absorption 

with the fundamental Reststrahl frequency v. of tiiese crystals being six to eight 

times smaller than the CO- laser frequency of 943 cm    .   It lias been established 

I 2 
experimentally and theoretically that for v > v., the intrinsic multiphonon ab- 

sorption coefficient ß. decreases nearly exponentially with increasing frequency. 

Extrapolation of the measured low-frequency intrinsic absorption coefficients yields 

ß.      = 8 x 10    cm     for KC1 and ß.      = 5 v 10     cm     for KHr at 943 cm* .  Ilow- Hint ' int 

ever, absorption in even the best currently available materials is impurity domi- 

-4      -1 
nated with ß > 10    cm     at the CO- laser frequency. 
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The present paper provides evidence that an important class of infrared- 

absorbing impurities is polyatomic molecular anions that substitute for the. halide 

ions in the crystal lattices. Several ionic impurities that absorb strongly at 943 

cm'   are identified.   rI"he influence of absorbing inclusions on the bulk absorption 

coefficient and the failure of materials containing inclusions have been considered 

in previous publications. 

II.   IMPURITY SPECTRA 

As an example, the case of NCL substituting for the Cl    ion in KC1 is drawn 

to scale in Fig. HI,    'l"his ion fits loosely into the lattice and suffers little distor- 

tion. Consequently the internal vibrations of N02 and other substitutional anions 

are only slightly affected by the presence of the host crystal.  1 requency shifts of 

tne molecular modes and splittings of degenerate modes are small. Infrared inac- 

tive modes may be weakly absorbing in the crystal. 

Because of the small interaction with the host crystal, spectroscopists have 

used the technique of alkali-halide matrix isolation for a number of years to con- 

centrate and isolate ions for convenient study using conventional absorption spec- 

troscopy. A literature survey lias been made of those ions that have been studied 

in KC1 and Kbr crystals. Those that most severely limit 10.6jini transmission 

are presented below. 

To estimate the absorption at the laser frequency of v - 943 cm     due to an 

impurity mode ftt to*» a Lorentzian line shape 

j3(i/)  -   (const) 
(l/-l/())

2 MAy/2)2 
(1) 
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is assumed. In Hquation (1), Au is the full width at half maximum, which is 

assumed to be frequency independent. When availa' '2, measured line strengths 

and line widths were used for extrapolation to 943 cm    . Typically for a crystal 

with 0.1'V Impurity concentration   the absorption coefficient /JdO at the center 

2 3-1 
of an allowed transition ranges from 10   to 10  cm    , with Af ranging from 4 to 

SO cm  ' depending on the particular molecular species and host. 

Impurities that substitute for lattice ions can be grouped into a few general 

types.  First, atomic impurities can either yield an infrared active local mode of 

the lattice, or can activate normally infrared inactive plionons.  liowever, because 

the freciuencies of these modes are generally small compared to 943 cm" , little 

absorption occurs at the CCL laser frequency.   Ibe LJ center at S00 cm'   has the 

highest frequency ot this group and we estimate that more than 10 ppm H~ is 

-1 -4      -1 6 
needed to produce ß{v     943 cm     ) ■ 10     cm    . 

nimmiic ionic impurities that have been studied in KC1 and Kl5r crystals, on 

the other hand, have absorption frequencies that are too large to result in signifi- 

cant absorption at ^43 cm in spit« of their large room-temperature line widths, 

ibe hydroxyl ion (OH ) with */ ■ 3640 cm , is a member of this group. 1 here 

has been concern regarding the hydroxyl ion because of the difficulty in removing 

this ion from alkali-halide crystals/   However, using Au - SO cm'   in Hq. (1), 

we estimate that greater than 100 ppm of OH- at isolated lattice sites is needed 

-1 -4     -1 8 

to yield /3(^43cm     ) ■ 10     cm    .     At high impurity concentrations, OH     may 

combine with other impurities to absorb more stronglv at l)43 cm    . 

At chemical laser wavelengths near 3pn diatomic ionic impurities will se- 

verely limit laser transmission, besides OH~ with A     2.7^m, SI!- and CN'~ 

206 



,—. ■Ill   HB^wawa uwmt^^r^^^rwm ■■     -■■-"-   ■ " 

Sec. H 

are observed to have strong absorption lines at 3.9jim and A.H^m, respectively, 

in both KC1 and Kür.9   Since the absorption wave^ngths are a property of the im- 

purity ion rather than the host material, the abov.' diatomic ions, when present in 

alkaline-earth halides, should absorb at nearly the same wavelengths. 

Polyatomic impurities have several infrared active modes, some of which may 

occur near 943 cm"1 and produce considerable C02 laser absorption. This group 

can be further subdivided into small and large ions. Small polyatomic ions such as 

NO"' fit loosely into die lattice and have large, temperature dependent line widths 

due to rotational and translational degrees of freedom.  Larger ions such as nC03 

fit tightly into the lattice and have several narrow, temperature insensitive lines. 

2- 
In addition to the above groups, polyvalent ions such as S04    can substitute 

for the singly charged halide ion. In order to preserve the charge neutrality of the 

crystal, these ions must be accompanied by a compensating vacancy or by a diva- 

2+ -1 
lent cation impurity such as Mg    .   The infrared spectrum and 943 cm     absorp- 

tion is dependent on the particular compensating species. 

- -       2- 
Our literature survey indicates that 0.03 ppm of either N02, HC03, SO^  , or 

CrO2' will result in ß(i/ = 943 cm"1) = lO^cm"1.   Calculated spectra using an 
4 

assumed Lorentzian line shape along with experimental frequencies and line widths 

2- 10 

are shown in Figure 112(A-C) for N02, HCXXj, and S04 . 

In each of the cases shown in these figures, the laser frequency, 943 cm    , 

falls at the edge of a small number of peaks representing the infrared active in- 

ternal modes of the impurity. It would seem from looking at these figures that it 

would be easy to measure the spectrum of a crystal containing an unknown im- 

purity and hence determine the impurity.   However, there are two difficulties. 
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-2      -1 
first, the absorption coefficient at the peaks is only 10     cm      so that it would 

be difficult to make high resolution measurements using conventional spectro- 

scopy. Second, and more important, several impurities with overlapping absorp- 

tion lines will be present in a real crystal. 

In Fig. H2-D we represent a real crystal by adding the absorption coefficient 

in the previous three figures.   The individual lines near 1200 cm     have merged 

to form a relatively featureless, broad peak.   The only distinctive lines remain- 

ing are the two HCO~ lines at 840 cm'1 and 971 cm'  .   If we next decrease the 
2+ 

amount of HCÜ„   and add different compensating divalent cations such as Pb 

along with a small amount of CrO^', even the calculated spectrum would appear 

completely featureless.   This overlapping of absorption lines from several poly- 

atomic ions (all of which contain oxygen) could account for the broad unidentified 

absorption peak near 9,Spn that has been observed experimentally. 

The above examples serve to illustrate the importance of molecular-ion im- 

purities on laser transmission in ionic solids.   Besides the impurities given above, 

it has recently been reported that CIO" will severely limit 10.6)im transmission 

through alkali halides.12   CO~   and CO2' will absoro near 6pm but should have 

little effect on 10.6(im transmission. '    A more complete survey of the ions that 
14 

have been studied in KC1 and KBr has been published elsewhere. 
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